메뉴 건너뛰기




Volumn 172, Issue 12, 2010, Pages 1352-1354

Invited commentary: Pushing the mediation envelope

Author keywords

Collapsibility; Confounding; Epidemiologic methods; Log linear models; Logistic regression; Standardization

Indexed keywords

EPIDEMIOLOGY; MATHEMATICAL THEORY; NUMERICAL MODEL; REGRESSION ANALYSIS; STANDARDIZATION; TEMPORAL ANALYSIS;

EID: 79952117988     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwq328     Document Type: Review
Times cited : (2)

References (10)
  • 1
    • 79952117042 scopus 로고    scopus 로고
    • Odds ratios for mediation analysis for a dichotomous outcome
    • VanderWeele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010;172(12):1339-1348
    • (2010) Am J Epidemiol , vol.172 , Issue.12 , pp. 1339-1348
    • Vanderweele, T.J.1    Vansteelandt, S.2
  • 2
    • 77953957726 scopus 로고    scopus 로고
    • Conceptual issues concerning mediation, interventions and composition
    • VanderWeele TJ, Vansteelandt S. Conceptual issues concerning mediation, interventions and composition. Stat Interface. 2009;2:457-468
    • (2009) Stat Interface , vol.2 , pp. 457-468
    • Vanderweele, T.J.1    Vansteelandt, S.2
  • 3
    • 4444244491 scopus 로고    scopus 로고
    • Statistical assessment of mediational effects for logistic mediational models
    • Huang B, Sivaganesan S, Succop P, et al. Statistical assessment of mediational effects for logistic mediational models. Stat Med. 2004;23(17):2713-2728
    • (2004) Stat Med , vol.23 , Issue.17 , pp. 2713-2728
    • Huang, B.1    Sivaganesan, S.2    Succop, P.3
  • 4
    • 77956624828 scopus 로고    scopus 로고
    • On quantifying the magnitude of confounding
    • Janes H, Dominici F, Zeger S. On quantifying the magnitude of confounding. Biostatistics. 2010;11(3):572-582
    • (2010) Biostatistics , vol.11 , Issue.3 , pp. 572-582
    • Janes, H.1    Dominici, F.2    Zeger, S.3
  • 6
    • 77956891487 scopus 로고
    • Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
    • Gail M,Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika. 1984;71(3):431-444
    • (1984) Biometrika , vol.71 , Issue.3 , pp. 431-444
    • Gail Mwieand, S.1    Piantadosi, S.2
  • 7
    • 25844483844 scopus 로고    scopus 로고
    • Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models
    • Robins J, Rotnitzky A. Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models. Biometrika. 2004;91(4): 763-783
    • (2004) Biometrika , vol.91 , Issue.4 , pp. 763-783
    • Robins, J.1    Rotnitzky, A.2
  • 9
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equation approach
    • Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988;44(4):1049-1060
    • (1988) Biometrics , vol.44 , Issue.4 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.Y.2    Albert, P.S.3
  • 10
    • 0036792805 scopus 로고    scopus 로고
    • Mediators and moderators of treatment effects in randomized clinical trials
    • Kraemer HC, Wilson GT, Fairburn CG, et al. Mediators and moderators of treatment effects in randomized clinical trials. Arch Gen Psychiatry. 2002;59(10):877-883
    • (2002) Arch Gen Psychiatry , vol.59 , Issue.10 , pp. 877-883
    • Kraemer, H.C.1    Wilson, G.T.2    Fairburn, C.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.