메뉴 건너뛰기




Volumn 32, Issue 7, 2011, Pages 973-986

APSCAN: A parameter free algorithm for clustering

Author keywords

Affinity propagation algorithm; Clustering algorithm; DBSCAN

Indexed keywords

A-DENSITY; AFFINITY PROPAGATION; CLUSTERING RESULTS; DATA POINTS; DATA SETS; DBSCAN; DENSITY PARAMETERS; DENSITY-BASED; INPUT PARAMETER; LOCAL DENSITY; NONLINEAR DATA; PRIOR KNOWLEDGE; SPATIAL DATASETS; TWO PARAMETER;

EID: 79952106003     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.02.001     Document Type: Article
Times cited : (64)

References (33)
  • 1
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P.; 1998. Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. ACM SIGMOD Internat. Conf. on the Management of Data, pp. 94-105. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 33846024749 scopus 로고    scopus 로고
    • ST-DBSCAN: An algorithm for clustering spatial-temporal data
    • DOI 10.1016/j.datak.2006.01.013, PII S0169023X06000218
    • D. Birant, and A. Kut ST-DBSCAN: An algorithm for clustering spatial-temporal data Data Knowl. Eng. 60 2007 208 221 (Pubitemid 46053593)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 208-221
    • Birant, D.1    Kut, A.2
  • 5
    • 0043006302 scopus 로고    scopus 로고
    • Spectral kernel methods for clustering
    • Cristianini, N.; Taylor, J.S.; Kandola, J.S.; 2001. Spectral kernel methods for clustering. In: NIPS 14, pp. 649-655.
    • (2001) NIPS , vol.14 , pp. 649-655
    • Cristianini, N.1    Taylor, J.S.2    Kandola, J.S.3
  • 7
    • 50649119439 scopus 로고    scopus 로고
    • Non-metric affinity propagation for unsupervised image categortization
    • Dueck, D.; Frey, B.J.; 2007. Non-metric affinity propagation for unsupervised image categortization. In: Proc. 11th Internat. Conf. on Computer Vision, pp.1-8.
    • (2007) Proc. 11th Internat. Conf. on Computer Vision , pp. 1-8
    • Dueck, D.1    Frey, B.J.2
  • 10
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • DOI 10.1016/j.patcog.2007.05.018, PII S0031320307002580
    • M. Filippone, F. Camastra, F. Masulli, and S. Rovetta A survey of kernel and spectral methods for clustering Pattern Recognition 41 1 2008 176 190 (Pubitemid 47284212)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 11
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • E. Forgy Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications Biometrics 21 1965 768 780
    • (1965) Biometrics , vol.21 , pp. 768-780
    • Forgy, E.1
  • 12
    • 84864058806 scopus 로고    scopus 로고
    • Mixture modeling by affinity propagation
    • Frey, B.J.; Dueck, D.; 2005. Mixture modeling by affinity propagation. In: NIPS 18, pp. 379-386.
    • (2005) NIPS , vol.18 , pp. 379-386
    • Frey, B.J.1    Dueck, D.2
  • 13
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • B.J. Frey, and D. Dueck Clustering by passing message between data points Science 315 2007 972 976 (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 14
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • DOI 10.1109/TNN.2002.1000150, PII S1045922702050038
    • M. Girolami Mercer kernel based clustering in feature space IEEE Trans. Neural Networks 13 3 2002 780 784 (Pubitemid 34669666)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 15
    • 0012478906 scopus 로고
    • An introduction to spatial database systems
    • R.H. Güting An introduction to spatial database systems J. VLDB 3 4 1994 357 399
    • (1994) J. VLDB , vol.3 , Issue.4 , pp. 357-399
    • Güting, R.H.1
  • 17
    • 0037099107 scopus 로고    scopus 로고
    • Effects of cloud horiziontal inhomogeneity on the optical thickness retrieved from moderate-resolution satellites data
    • H. Iwabuchi, and T. Hayasaka Effects of cloud horiziontal inhomogeneity on the optical thickness retrieved from moderate-resolution satellites data J. Atmos. Sci. 59 14 2002 2227 2242
    • (2002) J. Atmos. Sci. , vol.59 , Issue.14 , pp. 2227-2242
    • Iwabuchi, H.1    Hayasaka, T.2
  • 18
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A.K. Jain Data clustering: 50 years beyond K-means Patter Recognition Lett. 31 8 2010 651 666
    • (2010) Patter Recognition Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 20
    • 0014129195 scopus 로고
    • Hierarchical clustering scheme
    • S.C. Johnson Hierarchical clustering scheme Psychometrika 32 3 1967 241 254
    • (1967) Psychometrika , vol.32 , Issue.3 , pp. 241-254
    • Johnson, S.C.1
  • 23
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • DOI 10.1016/S0031-3203(02)00060-2, PII S0031320302000602
    • A. Likas, N. Vlassis, and J.J. Verbeek The global K-means clustering algorithm Pattern Recognition 36 2 2003 451 461 (Pubitemid 35212840)
    • (2002) Pattern Recognition , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    J. Verbeek, J.3
  • 24
    • 57849145581 scopus 로고    scopus 로고
    • Multi-modality video shot clustering with tensor representation
    • Y.N. Liu, and F. Wu Multi-modality video shot clustering with tensor representation J. Multimed. Tools Appl. 41 2008 93 109
    • (2008) J. Multimed. Tools Appl. , vol.41 , pp. 93-109
    • Liu, Y.N.1    Wu, F.2
  • 25
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen, J.; 1967. Some methods for classification and analysis of multivariate observations. In: Proc: 5th Berkeley Symp.; pp. 281-297.
    • (1967) Proc: 5th Berkeley Symp. , pp. 281-297
    • MacQueen, J.1
  • 26
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The alogrithm GDBSCAN and its applications
    • J. Sander, M. Ester, H.P. Kriegel, and X.W. Xu Density-based clustering in spatial databases: The alogrithm GDBSCAN and its applications Data Min. Knowl. Disc. 2 1998 169 194
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.W.4
  • 27
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 5 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 29
    • 70350130556 scopus 로고    scopus 로고
    • Rough-DBSCAN: A fast hybrid density based clustering method for large data sets
    • P. Viswanath, and V.S. Babu Rough-DBSCAN: A fast hybrid density based clustering method for large data sets Pattern Recognition Lett. 30 16 2009 1477 1488
    • (2009) Pattern Recognition Lett. , vol.30 , Issue.16 , pp. 1477-1488
    • Viswanath, P.1    Babu, V.S.2
  • 30
    • 34047195988 scopus 로고    scopus 로고
    • L-DBSCAN: A fast hybrid density based clustering method
    • DOI 10.1109/ICPR.2006.741, 1699038, Proceedings - 18th International Conference on Pattern Recognition, ICPR 2006
    • Viswanath, P.; Pinkesh, R.; 2006. l-DBSCAN: A fast hybrid density based clustering method. In: Proc. 18th Internat. Conf. on Pattern Recognition, pp. 912-915. (Pubitemid 46532048)
    • (2006) Proceedings - International Conference on Pattern Recognition , vol.1 , pp. 912-915
    • Viswanath, P.1    Pinkesh, R.2
  • 31
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D. Wunsch II Survey of clustering algorithms IEEE Trans. Neural Network 16 3 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.