-
1
-
-
84891017895
-
-
Overview about biomimetic catalysis: Wiley-VCH, Weinheim
-
a) Overview about biomimetic catalysis: Artificial Enzymes (Ed.: R. Breslow), Wiley-VCH, Weinheim, 2005;
-
(2005)
Artificial Enzymes
-
-
Breslow, R.1
-
2
-
-
77954251837
-
-
Review
-
b) Review: A. Weckbecker, H. Gröger, W. Hummel, Adv. Biochem. Engin./Biotechnol. 2010, 120, 195-242.
-
(2010)
Adv. Biochem. Engin./Biotechnol.
, vol.120
, pp. 195-242
-
-
Weckbecker, A.1
Gröger, H.2
Hummel, W.3
-
3
-
-
0001742457
-
-
D. Westerhausen, S. Herrmann, W. Hummel, E. Steckhan, Angew. Chem. 1992, 104, 1496-1498;
-
(1992)
Angew. Chem.
, vol.104
, pp. 1496-1498
-
-
Westerhausen, D.1
Herrmann, S.2
Hummel, W.3
Steckhan, E.4
-
5
-
-
0142074820
-
-
a) W. Hummel, M. Kuzu, B. Geueke, Org. Lett. 2003, 5, 3649-3650;
-
(2003)
Org. Lett.
, vol.5
, pp. 3649-3650
-
-
Hummel, W.1
Kuzu, M.2
Geueke, B.3
-
6
-
-
0037415359
-
-
b) B. Geueke, B. Riebel, W. Hummel, Enzyme Microb. Technol. 2003, 32, 205-211;
-
(2003)
Enzyme Microb. Technol.
, vol.32
, pp. 205-211
-
-
Geueke, B.1
Riebel, B.2
Hummel, W.3
-
7
-
-
0242607605
-
-
c) B. R. Riebel, P. R. Gibbs, W. B. Wellborn, A. S. Bommarius, Adv. Synth. Catal. 2003, 345, 707-712;
-
(2003)
Adv. Synth. Catal.
, vol.345
, pp. 707-712
-
-
Riebel, B.R.1
Gibbs, P.R.2
Wellborn, W.B.3
Bommarius, A.S.4
-
9
-
-
0042406617
-
-
B. R. Riebel, P. R. Gibbs,W. B.Wellborn, A. S. Bommarius, Adv. Synth. Catal. 2002, 344, 1156-1168.
-
(2002)
Adv. Synth. Catal.
, vol.344
, pp. 1156-1168
-
-
Riebel, B.R.1
Gibbs, P.R.2
Welborn, W.B.3
Bommarius, A.S.4
-
10
-
-
55049133052
-
-
An interesting example of a chemoenzymatic cofactor-regeneration was recently reported
-
An interesting example of a chemoenzymatic cofactor-regeneration was recently reported in: S. L. Pival, M. Klimacek, B. Nidetzky, Adv. Synth. Catal. 2008, 350, 2305-2312.
-
(2008)
Adv. Synth. Catal.
, vol.350
, pp. 2305-2312
-
-
Pival, S.L.1
Klimacek, M.2
Nidetzky, B.3
-
11
-
-
0037448512
-
-
I. Schröder, E. Steckhan, A. Liese, J. Electroanal. Chem. 2003, 541, 109-115.
-
(2003)
J. Electroanal. Chem.
, vol.541
, pp. 109-115
-
-
Schröder, I.1
Steckhan, E.2
Liese, A.3
-
12
-
-
33748740090
-
-
G. Hilt, B. Lewall, G. Montero, J. H. P. Utley, E. Steckhan, Liebigs Ann. 1997, 2289-2296.
-
(1997)
Liebigs Ann.
, pp. 2289-2296
-
-
Hilt, G.1
Lewall, B.2
Montero, G.3
Utley, J.H.P.4
Steckhan, E.5
-
13
-
-
0034088779
-
-
a) I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G. A. Petsko, S. G. Sligar, Science 2000, 287, 1615-1622;
-
(2000)
Science
, vol.287
, pp. 1615-1622
-
-
Schlichting, I.1
Berendzen, J.2
Chu, K.3
Stock, A.M.4
Maves, S.A.5
Benson, D.E.6
Sweet, R.M.7
Ringe, D.8
Petsko, G.A.9
Sligar, S.G.10
-
14
-
-
0003479152
-
-
5th ed., Springer, Berlin
-
b) K. Faber, Biotransformations in Organic Chemistry, 5th ed., Springer, Berlin, 2004, pp. 227-230.
-
(2004)
Biotransformations in Organic Chemistry
, pp. 227-230
-
-
Faber, K.1
-
15
-
-
33845375955
-
-
A corresponding manganese complex containing this ligand turned out to be suitable for the transformation of synthetic dihydropyridine derivatives using flavin mononucleotide (FMN) as an electron carrier
-
A corresponding manganese complex containing this ligand turned out to be suitable for the transformation of synthetic dihydropyridine derivatives using flavin mononucleotide (FMN) as an electron carrier: I. Tabushi, M. Kodera, J. Am. Chem. Soc. 1986, 108, 1101-1103.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 1101-1103
-
-
Tabushi, I.1
Kodera, M.2
-
16
-
-
54849171100
-
-
For a review about bioinspired and biomimetic iron-catalyzed reactions, see
-
For a review about bioinspired and biomimetic iron-catalyzed reactions, see: S. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120, 3363-3367;
-
(2008)
Angew. Chem.
, vol.120
, pp. 3363-3367
-
-
Enthaler, S.1
Junge, K.2
Beller, M.3
-
17
-
-
50049109778
-
-
Angew. Chem. Int. Ed. 2008, 47, 3317-3321.
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 3317-3321
-
-
-
18
-
-
34247846368
-
-
J.-E. Jee, S. Eigler, N. Jux, A. Zahl, R. van Eldik, Inorg. Chem. 2007, 46, 3336-3352.
-
(2007)
Inorg. Chem.
, vol.46
, pp. 3336-3352
-
-
Jee, J.-E.1
Eigler, S.2
Jux, N.3
Zahl, A.4
Van Eldik, R.5
-
19
-
-
0015245552
-
-
Pioneering work in synthesis and characterization of iron TSPP complex 4
-
a) Pioneering work in synthesis and characterization of iron TSPP complex 4: E. B. Fleischer, J. M. Palmer, T. S. Srivastava, A. Chatterjee, J. Am. Chem. Soc. 1971, 93, 3162-3167;
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 3162-3167
-
-
Fleischer, E.B.1
Palmer, J.M.2
Srivastava, T.S.3
Chatterjee, A.4
-
20
-
-
79952044382
-
-
The iron TSPP complex 4 is commercially available from TriPorTech GmbH, Germany (product abbreviation: TSPP-FeIII ; product number: TPT00142617)
-
b) The iron TSPP complex 4 is commercially available from TriPorTech GmbH, Germany (product abbreviation: TSPP-FeIII ; product number: TPT00142617).
-
-
-
-
21
-
-
79952050448
-
-
Hitherto existing applications of metalloporphyrin complexes in oxidation reactions were either based on non-natural nicotinamide derivatives serving as NADH analogues or proceeded using oxidants other than oxygen, for example, hydrogen peroxide, organic peroxides, and iodosylbenzene. See: a reference [8]
-
Hitherto existing applications of metalloporphyrin complexes in oxidation reactions were either based on non-natural nicotinamide derivatives serving as NADH analogues or proceeded using oxidants other than oxygen, for example, hydrogen peroxide, organic peroxides, and iodosylbenzene. See: a) reference [8];
-
-
-
-
22
-
-
0040196045
-
-
b) S. Othman, V. Mansuy-Mouries, C. Bensoussan, P. Battioni, D. Mansuy, C. R. Chim. 2000, 3, 751-755;
-
(2000)
C. R. Chim.
, vol.3
, pp. 751-755
-
-
Othman, S.1
Mansuy-Mouries, V.2
Bensoussan, C.3
Battioni, P.4
Mansuy, D.5
-
23
-
-
33947139633
-
-
c) G. de Freitas Silva, D. C. da Silva, A. S. Guimaraes, E. do Nascimento, J. S. Reboucas, M. P. de Araujo, M. E. M. D. de Carvalho, Y. M. Idemori, J. Mol. Catal. A 2007, 266, 274-283.
-
(2007)
J. Mol. Catal. A
, vol.266
, pp. 274-283
-
-
De Freitas Silva, G.1
Da Silva, D.C.2
Guimaraes, A.S.3
Do Nascimento, E.4
Reboucas, J.S.5
De Araujo, M.P.6
De Carvalho, M.E.M.D.7
Idemori, Y.M.8
-
24
-
-
28844497694
-
-
The development of synthetic methods for the production of sugar acids is of fundamental interest because of their versatile applications. For example, the industrial chemical d-gluconic acid, which is biotechnologically produced starting from dglucose on a 100000 ton scale per year, is widely used in the food, metal, and textile industry. For a recently developed highly efficient chemocatalytic alternative, see: a) A. Mirescu, U. Prüße, Catal. Commun. 2006, 7, 11-17;
-
(2006)
Catal. Commun.
, vol.7
, pp. 11-17
-
-
Mirescu, A.1
Prüße, U.2
-
27
-
-
0027258051
-
-
The alcohol dehydrogenase catalyzed oxidation of cyclooctanol was previously performed with an enzymatic in situ regeneration of the cofactor: a
-
The alcohol dehydrogenase catalyzed oxidation of cyclooctanol was previously performed with an enzymatic in situ regeneration of the cofactor: a) T. Itozawa, H. Kise, Biotechnol. Lett. 1993, 15, 843-846;
-
(1993)
Biotechnol. Lett.
, vol.15
, pp. 843-846
-
-
Itozawa, T.1
Kise, H.2
-
28
-
-
38249028875
-
-
b) G. L. Lemiere, J. A. Lepoivre, F. C. Alderweireldt, Bioorg. Chem. 1988, 16, 165-174.
-
(1988)
Bioorg. Chem.
, vol.16
, pp. 165-174
-
-
Lemiere, G.L.1
Lepoivre, J.A.2
Alderweireldt, F.C.3
-
29
-
-
3042990330
-
-
For the formation of related iron(III) porphyrin complexes starting from iron(III) porphyrin and sodium borohydride as a hydride donor, see
-
For the formation of related iron(III) porphyrin complexes starting from iron(III) porphyrin and sodium borohydride as a hydride donor, see: J.-i. Setsune, Y. Ishimaru, A. Sera, Chem. Lett. 1992, 377-380.
-
(1992)
Chem. Lett.
, pp. 377-380
-
-
Setsune, J.-I.1
Ishimaru, Y.2
Sera, A.3
-
30
-
-
79952058314
-
-
The formation of related iron(III) hydroperoxyl, iron(III) peroxo, and iron(IV) oxo complexes as reactive intermediates was also described in connection with the reaction mechanisms of enzymatic hydroxylations with heme-containing P450 monooxygenases and nonheme-containing monooxygenases; for selected contributions, see: a reference [7]
-
The formation of related iron(III) hydroperoxyl, iron(III) peroxo, and iron(IV) oxo complexes as reactive intermediates was also described in connection with the reaction mechanisms of enzymatic hydroxylations with heme-containing P450 monooxygenases and nonheme-containing monooxygenases; for selected contributions, see: a) reference [7];
-
-
-
|