메뉴 건너뛰기




Volumn , Issue , 2010, Pages 361-368

Another look at causality: Discovering scenario-specific contingency relationships with no supervision

Author keywords

Causality; Contingency; Scenario; Topics

Indexed keywords

CAUSALITY; CONTINGENCY; HURRICANE KATRINA; IRAQ WAR; NATURAL LANGUAGE UNDERSTANDING; NEWS ARTICLES; PRECISION-RECALL PERFORMANCE; SCENARIO; TOPICS;

EID: 79952047541     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSC.2010.19     Document Type: Conference Paper
Times cited : (72)

References (24)
  • 3
    • 77956032571 scopus 로고    scopus 로고
    • Jointly combining implicit constraints improves temporal ordering
    • Association for Computational Linguistics, Morristown, NJ
    • N. Chambers and D. Jurafsky, Jointly combining implicit constraints improves temporal ordering, Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Morristown, NJ, 2008.
    • (2008) Empirical Methods in Natural Language Processing (EMNLP)
    • Chambers, N.1    Jurafsky, D.2
  • 4
    • 27644497673 scopus 로고    scopus 로고
    • Incremental cue phrase learning and bootstrapping method for causality extraction using cue phrase and word pair probabilities
    • D. Chang and K. Choi, Incremental cue phrase learning and bootstrapping method for causality extraction using cue phrase and word pair probabilities, Information Processing and Management, 2006, 24(3):662-678.
    • (2006) Information Processing and Management , vol.24 , Issue.3 , pp. 662-678
    • Chang, D.1    Choi, K.2
  • 5
    • 33745862007 scopus 로고    scopus 로고
    • Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability
    • Grenoble, France
    • I. Dagan and O. Glickman, Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability, Learning Methods for Text Understanding and Mining, Grenoble, France, 2004.
    • (2004) Learning Methods for Text Understanding and Mining
    • Dagan, I.1    Glickman, O.2
  • 9
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometricia, 1969, 37:424-438.
    • (1969) Econometricia , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 10
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • DOI 10.1023/B:DAMI.0000005258.31418.83
    • J. Han, J. Pei, Y. Yin, and R. Mao Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, 2004, 8(1):53-87. (Pubitemid 39019971)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 14
    • 84961480199 scopus 로고
    • Rhetorical structure theory: Toward a functional theory of text organization
    • W. C. Mann and S. A. Thompson, Rhetorical structure theory: Toward a functional theory of text organization, Text, 1988, 8(3):243281.
    • (1988) Text , vol.8 , Issue.3 , pp. 243281
    • Mann, W.C.1    Thompson, S.A.2
  • 16
    • 85185407361 scopus 로고    scopus 로고
    • Automatic Sense Prediction for Implicit Discourse Relations in Text
    • E. Pitler, A. Louis, and A. Nenkova, Automatic Sense Prediction for Implicit Discourse Relations in Text, ACL-IJCNLP, 2009.
    • (2009) ACL-IJCNLP
    • Pitler, E.1    Louis, A.2    Nenkova, A.3
  • 17
    • 79959948011 scopus 로고    scopus 로고
    • Using Syntax to Disambiguate Explicit Discourse Connectives in Text
    • E. Pitler and A. Nenkova, Using Syntax to Disambiguate Explicit Discourse Connectives in Text, ACL-IJCNLP, 2009.
    • (2009) ACL-IJCNLP
    • Pitler, E.1    Nenkova, A.2
  • 20
    • 44949130783 scopus 로고    scopus 로고
    • Using automatically labelled examples to classify rhetorical relations: An assessment
    • DOI 10.1017/S1351324906004451, PII S1351324906004451
    • C. Sporleder and A. Lascarides, Using automatically labeled examples to classify rhetorical relations: An assessment, Natural Language Engineering, 2008, 14(3): 369-416. (Pubitemid 351803570)
    • (2008) Natural Language Engineering , vol.14 , Issue.3 , pp. 369-416
    • Sporleder, C.1    Lascarides, A.2
  • 23
    • 84862283150 scopus 로고    scopus 로고
    • Semantic Role Labeling Using Complete Syntactic Analysis
    • Shared Task
    • M. Surdeanu and J. Turmo, Semantic Role Labeling Using Complete Syntactic Analysis, CoNLL, Shared Task, 2005.
    • (2005) CoNLL
    • Surdeanu, M.1    Turmo, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.