메뉴 건너뛰기




Volumn 4, Issue 160, 2011, Pages

Integrating multiple types of data for signaling research: Challenges and opportunities

Author keywords

[No Author keywords available]

Indexed keywords

BIOTECHNOLOGY; ENZYME LINKED IMMUNOSORBENT ASSAY; GENE SEQUENCE; MASS SPECTROMETRY; MEDICAL RESEARCH; PRIORITY JOURNAL; PROTEIN ANALYSIS; REAL TIME POLYMERASE CHAIN REACTION; REVIEW; ARTICLE; BIOLOGY; DATA BASE; GENOMICS; HUMAN; METHODOLOGY; PROTEOMICS; RESEARCH; SIGNAL TRANSDUCTION; STANDARD; STATISTICS;

EID: 79951879747     PISSN: 19450877     EISSN: 19379145     Source Type: Journal    
DOI: 10.1126/scisignal.2001826     Document Type: Review
Times cited : (15)

References (18)
  • 1
    • 77956289955 scopus 로고    scopus 로고
    • Classic and contemporary approaches to modeling biochemical reactions
    • W. W. Chen, M. Niepel, P. K. Sorger, Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 24, 1861-1875 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 1861-1875
    • Chen, W.W.1    Niepel, M.2    Sorger, P.K.3
  • 2
    • 33745828702 scopus 로고    scopus 로고
    • EGF-ERBB signalling: Towards the systems level
    • A. Citri, Y. Yarden, EGF-ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505-516 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 505-516
    • Citri, A.1    Yarden, Y.2
  • 3
    • 0037213006 scopus 로고    scopus 로고
    • Computational modeling of the EGF-receptor system: A paradigm for systems biology
    • H. S. Wiley, S. Y. Shvartsman, D. A. Lauffenburger, Computational modeling of the EGF-receptor system: A paradigm for systems biology. Trends Cell Biol. 13, 43-50 (2003).
    • (2003) Trends Cell Biol. , vol.13 , pp. 43-50
    • Wiley, H.S.1    Shvartsman, S.Y.2    Lauffenburger, D.A.3
  • 6
    • 60849113429 scopus 로고    scopus 로고
    • Sparse canonical methods for biological data integration: Application to a cross-platform study
    • K. A. Lê Cao, P. G. Martin, C. Robert-Granié, P. Besse, Sparse canonical methods for biological data integration: Application to a cross-platform study. BMC Bioinformatics 10, 34 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 34
    • Lê, K.A.1    Martin, C.P.G.2    Robert-Granié, C.3    Besse, P.4
  • 7
    • 76449115656 scopus 로고    scopus 로고
    • Integrating multiple 'omics' analysis for microbial biology: Application and methodologies
    • W. Zhang, F. Li, L. Nie, Integrating multiple 'omics' analysis for microbial biology: Application and methodologies. Microbiology 156, 287-301 (2010).
    • (2010) Microbiology , vol.156 , pp. 287-301
    • Zhang, W.1    Li, F.2    Nie, L.3
  • 8
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • H. Guo, N. T. Ingolia, J. S. Weissman, D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 (2010).
    • (2010) Nature , vol.466 , pp. 835-840
    • Guo, H.1    Ingolia, N.T.2    Weissman, J.S.3    Bartel, D.P.4
  • 10
    • 34248563045 scopus 로고    scopus 로고
    • Enabling high-throughput data management for systems biology: The Bioinformatics Resource Manager
    • A. R. Shah, M. Singhal, K. R. Klicker, E. G. Stephan, H. S. Wiley, K. M. Waters, Enabling high-throughput data management for systems biology: The Bioinformatics Resource Manager. Bioinformatics 23, 906-909 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 906-909
    • Shah, A.R.1    Singhal, M.2    Klicker, K.R.3    Stephan, E.G.4    Wiley, H.S.5    Waters, K.M.6
  • 11
    • 34547683663 scopus 로고    scopus 로고
    • Integration of bioinformatics resources for functional analysis of gene expression and proteomic data
    • H. Huang, Z. Z. Hu, C. N. Arighi, C. H. Wu, Integration of bioinformatics resources for functional analysis of gene expression and proteomic data. Front. Biosci. 12, 5071-5088 (2007).
    • (2007) Front. Biosci. , vol.12 , pp. 5071-5088
    • Huang, H.1    Hu, Z.Z.2    Arighi, C.N.3    Wu, C.H.4
  • 15
    • 34447313945 scopus 로고    scopus 로고
    • How do shotgun proteomics algorithms identify proteins?
    • E. M. Marcotte, How do shotgun proteomics algorithms identify proteins? Nat. Biotechnol. 25, 755-757 (2007).
    • (2007) Nat. Biotechnol. , vol.25 , pp. 755-757
    • Marcotte, E.M.1
  • 16
    • 0942287072 scopus 로고    scopus 로고
    • Proteogenomic mapping as a complementary method to perform genome annotation
    • J. D. Jaffe, H. C. Berg, G. M. Church, Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4, 59-77 (2004).
    • (2004) Proteomics , vol.4 , pp. 59-77
    • Jaffe, J.D.1    Berg, H.C.2    Church, G.M.3
  • 18
    • 70350452746 scopus 로고    scopus 로고
    • Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks
    • S. S. Huang, E. Fraenkel, Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2, ra40 (2009).
    • (2009) Sci. Signal. , vol.2
    • Huang, S.S.1    Fraenkel, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.