-
1
-
-
0026418434
-
-
Trost, B. M. Science 1991, 254, 1471-1477.
-
(1991)
Science
, vol.254
, pp. 1471-1477
-
-
Trost, B.M.1
-
2
-
-
0000902631
-
-
Trost, B. M. Science 1983, 219, 245-250.
-
(1983)
Science
, vol.219
, pp. 245-250
-
-
Trost, B.M.1
-
3
-
-
65449168377
-
-
Song, J. J.; Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Green Chem. Lett. Rev. 2008, 1, 141-148.
-
(2008)
Green Chem. Lett. Rev.
, vol.1
, pp. 141-148
-
-
Song, J.J.1
Reeves, J.T.2
Fandrick, D.R.3
Tan, Z.4
Yee, N.K.5
Senanayake, C.H.6
-
5
-
-
0034665244
-
-
Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321-3329.
-
(2000)
Chem. Eur. J.
, vol.6
, pp. 3321-3329
-
-
Bienayme, H.1
Hulme, C.2
Oddon, G.3
Schmitt, P.4
-
6
-
-
0035814061
-
-
Lehmann, T.; Hubner, H.; Gmeiner, P. Bioorg. Med. Chem. Lett. 2001, 11, 2863-2866.
-
(2001)
Bioorg. Med. Chem. Lett.
, vol.11
, pp. 2863-2866
-
-
Lehmann, T.1
Hubner, H.2
Gmeiner, P.3
-
8
-
-
79951771430
-
-
For references of biological activities involves indolizine core, see references in the following reference: ACS ASAP
-
For references of biological activities involves indolizine core, see references in the following reference: Bai, Y.; Zeng, J.; Ma, J.; Gorityala, B. K.; Liu, X.-W. J. Comb. Chem. ACS ASAP.
-
J. Comb. Chem.
-
-
Bai, Y.1
Zeng, J.2
Ma, J.3
Gorityala, B.K.4
Liu, X.-W.5
-
10
-
-
0031060462
-
-
Troll, T.; Beckel, H.; Lentner-Boehm, C. Tetrahedron 1997, 53, 81-90.
-
(1997)
Tetrahedron
, vol.53
, pp. 81-90
-
-
Troll, T.1
Beckel, H.2
Lentner-Boehm, C.3
-
11
-
-
37049061280
-
-
For earliest reaction discovery, see
-
For earliest reaction discovery, see: Braude, E. A.; Hannah, J. J. Chem. Soc. 1960, 3268-3270;
-
(1960)
J. Chem. Soc.
, pp. 3268-3270
-
-
Braude, E.A.1
Hannah, J.2
-
12
-
-
0001734374
-
-
Norcross, B. E.; Klinedinst, P. E., Jr.; Westheimer, F. H. J. Am. Chem. Soc. 1962, 84, 797-802.
-
(1962)
J. Am. Chem. Soc.
, vol.84
, pp. 797-802
-
-
Norcross, B.E.1
Klinedinst Jr., P.E.2
Westheimer, F.H.3
-
13
-
-
73949129019
-
-
For recent applications, see
-
For recent applications, see: Huang, Y.-B.; Cai, C. J. Chem. Res. 2009, 11, 686-688;
-
(2009)
J. Chem. Res.
, vol.11
, pp. 686-688
-
-
Huang, Y.-B.1
Cai, C.2
-
14
-
-
77149176225
-
-
Rueping, M.; Tato, F.; Schoepke, F. R. Chem. Eur. J. 2010, 16, 2688-2691;
-
(2010)
Chem. Eur. J.
, vol.16
, pp. 2688-2691
-
-
Rueping, M.1
Tato, F.2
Schoepke, F.R.3
-
15
-
-
72949111352
-
-
Ramachary, D. B.; Mondal, R.; Venkaiah, C. Org. Biomol. Chem. 2010, 8, 321-325.
-
(2010)
Org. Biomol. Chem.
, vol.8
, pp. 321-325
-
-
Ramachary, D.B.1
Mondal, R.2
Venkaiah, C.3
-
17
-
-
35548991545
-
-
For recent reports of synthesis of 3-aminoindolizine, see: Ref. 8, and
-
For recent reports of synthesis of 3-aminoindolizine, see: Ref. 8, and Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323-4326.
-
(2007)
Org. Lett.
, vol.9
, pp. 4323-4326
-
-
Yan, B.1
Liu, Y.2
-
18
-
-
79951774517
-
-
note
-
At the end of our study, we re-examined more closely the formation of 1e from 2a and 3e (Table 1, entry 9). We found that under the original reaction conditions as described in Table 1, entry 9, an enamine 11 side product was formed (Fig. A) in ca. 20% yield. Compound 11 is stable to flash chromatography over silica gel column (Chemical Equation Presented) We then found that without the use of Knoevenagel condensation catalyst piperidinium acetate, the formation of 11 was reduced but the reaction yield of 1e was hardly effected (46% without vs 44% with piperidinium acetate). In order to further suppress the formation of 11, we used 1.4 instead of 1.0 equiv of 3e in the absence of a catalyst, and found that the yield of 1e was improved from 46% to 59% (Scheme A).
-
-
-
-
19
-
-
79951774559
-
-
note
-
Attempts to cyclize 8a under a variety of conditions failed to provide any cyclized product. Further exploration needs to be done.
-
-
-
|