메뉴 건너뛰기




Volumn 33, Issue 2, 2011, Pages 180-187

Non-linear multivariate modeling of cerebral hemodynamics with autoregressive Support Vector Machines

Author keywords

Autoregressive models; Hemodynamics; PaCO2; Support Vector Machines

Indexed keywords

AR MODELS; ARTERIAL BLOOD PRESSURE; AUTO REGRESSIVE MODELS; AUTO-REGRESSIVE; CEREBRAL BLOOD FLOW; CEREBRAL HEMODYNAMICS; CORRELATION COEFFICIENT; FINITE IMPULSE RESPONSE MODEL; HEALTHY SUBJECTS; METABOLIC MECHANISM; MULTIVARIATE AUTOREGRESSIVE; NON-LINEAR; NON-LINEAR MODEL; PACO2; REGULATORY MECHANISM;

EID: 79951771125     PISSN: 13504533     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.medengphy.2010.09.023     Document Type: Article
Times cited : (22)

References (31)
  • 3
    • 0031880592 scopus 로고    scopus 로고
    • Assesment of cerebral pressure autoregulation in humans-a review of measurement methods
    • Panerai R.B. Assesment of cerebral pressure autoregulation in humans-a review of measurement methods. Physiol Meas 1998, 19:305-338.
    • (1998) Physiol Meas , vol.19 , pp. 305-338
    • Panerai, R.B.1
  • 4
    • 0021637357 scopus 로고
    • Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure: a transcranial ultrasound Doppler study
    • Markwalder T.H., Grollmund P., Seiler R.W., Roth F., Aaslid R. Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure: a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 1984, 4:368-372.
    • (1984) J Cereb Blood Flow Metab , vol.4 , pp. 368-372
    • Markwalder, T.H.1    Grollmund, P.2    Seiler, R.W.3    Roth, F.4    Aaslid, R.5
  • 5
    • 0030455702 scopus 로고    scopus 로고
    • Indexes of flow and cross-sectional area of the middle cerebral artery using Dopler ultrasound during hypoxia and hypercapnia in humans
    • Poulin M.J., Robbins P.A. Indexes of flow and cross-sectional area of the middle cerebral artery using Dopler ultrasound during hypoxia and hypercapnia in humans. Stroke 1996, 27:2244-2250.
    • (1996) Stroke , vol.27 , pp. 2244-2250
    • Poulin, M.J.1    Robbins, P.A.2
  • 12
    • 0027688143 scopus 로고
    • Identification of nonlinear biological systems using Laguerre expansions of kernels
    • Marmarelis V.Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 1993, 21:573-589.
    • (1993) Ann Biomed Eng , vol.21 , pp. 573-589
    • Marmarelis, V.Z.1
  • 15
    • 35148828595 scopus 로고    scopus 로고
    • Electric load forecasting-using kernel based modeling for nonlinear system identification
    • [Special Issue on Applications of System Identification]
    • Espinoza M., Suykens J.K.A., Belmans R., De Moor B. Electric load forecasting-using kernel based modeling for nonlinear system identification. IEEE Control Syst Mag 2007, 43-57. [Special Issue on Applications of System Identification].
    • (2007) IEEE Control Syst Mag , pp. 43-57
    • Espinoza, M.1    Suykens, J.K.A.2    Belmans, R.3    De Moor, B.4
  • 17
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation. Regression estimation, and signal processing
    • MIT Press, Cambridge, MA
    • Vapnik V., Golowich S., Smola A. Support vector method for function approximation. Regression estimation, and signal processing. Neural information processing systems 1997, 9:281-287. MIT Press, Cambridge, MA.
    • (1997) Neural information processing systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 19
    • 79951774968 scopus 로고    scopus 로고
    • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Technical Report: Department of Computer Science, National Taiwan University;
    • Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification. Technical Report: Department of Computer Science, National Taiwan University; 2003.
    • (2003)
  • 20
    • 29244464791 scopus 로고    scopus 로고
    • Objective selection of signal for assessment of cerebral blood flow autoregulation in neonates
    • Ramos E.G., Simpson D.M., Panerai R.B., Nadal J., Lopez J.A.M., Evans D.H. Objective selection of signal for assessment of cerebral blood flow autoregulation in neonates. Physiol Meas 2006, 27:35-49.
    • (2006) Physiol Meas , vol.27 , pp. 35-49
    • Ramos, E.G.1    Simpson, D.M.2    Panerai, R.B.3    Nadal, J.4    Lopez, J.A.M.5    Evans, D.H.6
  • 21
    • 40649103922 scopus 로고    scopus 로고
    • Cerebral autoregulation: from models to clinical applications
    • Panerai R.B. Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng 2008, 8:42-59.
    • (2008) Cardiovasc Eng , vol.8 , pp. 42-59
    • Panerai, R.B.1
  • 22
    • 0344872753 scopus 로고    scopus 로고
    • Neural network modelling of dynamic cerebral autoregulation: assessment and comparison with established methods
    • Panerai R.B., Chacon M.M., Pereira R.R., Evans D.H.D.H. Neural network modelling of dynamic cerebral autoregulation: assessment and comparison with established methods. Med Eng Phys 2004, 26:43-52.
    • (2004) Med Eng Phys , vol.26 , pp. 43-52
    • Panerai, R.B.1    Chacon, M.M.2    Pereira, R.R.3    Evans, D.H.D.H.4
  • 24
    • 33750723450 scopus 로고    scopus 로고
    • A model of the interaction between autoregulation and neural activation in the brain
    • Payne S.J. A model of the interaction between autoregulation and neural activation in the brain. Math Biosci 2006, 204:260-281.
    • (2006) Math Biosci , vol.204 , pp. 260-281
    • Payne, S.J.1
  • 26
    • 33744774668 scopus 로고    scopus 로고
    • Combined transfer function analysis and modelling of cerebral autoregulation
    • Payne S.J., Tarassenko L. Combined transfer function analysis and modelling of cerebral autoregulation. Ann Biomed Eng 2006, 34:847-858.
    • (2006) Ann Biomed Eng , vol.34 , pp. 847-858
    • Payne, S.J.1    Tarassenko, L.2
  • 27
    • 0029036913 scopus 로고
    • Comparison of static and dynamic cerebral autoregulation measurements
    • Tiecks F.P., Lam A.M., Aaslid R., Newell D.W. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 1995, 26:1014-1019.
    • (1995) Stroke , vol.26 , pp. 1014-1019
    • Tiecks, F.P.1    Lam, A.M.2    Aaslid, R.3    Newell, D.W.4
  • 28
    • 23744476758 scopus 로고    scopus 로고
    • High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation
    • Liu J., Simpson D.M., Allen R. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation. Physiol Meas 2005, 26:725-741.
    • (2005) Physiol Meas , vol.26 , pp. 725-741
    • Liu, J.1    Simpson, D.M.2    Allen, R.3
  • 29
    • 0037274901 scopus 로고    scopus 로고
    • Short-term variability of cerebral blood flow velocity responses to arterial blood pressure transients
    • Panerai R.B., Carey B.J., Potter J.F. Short-term variability of cerebral blood flow velocity responses to arterial blood pressure transients. Ultrasound Med Biol 2003, 29:31-38.
    • (2003) Ultrasound Med Biol , vol.29 , pp. 31-38
    • Panerai, R.B.1    Carey, B.J.2    Potter, J.F.3
  • 30
    • 0038100611 scopus 로고    scopus 로고
    • Variability of time-domain indices of dynamic cerebral autoregulation
    • Panerai R.B., Eames P.J., Potter J.F. Variability of time-domain indices of dynamic cerebral autoregulation. Physiol Meas 2003, 24:367-381.
    • (2003) Physiol Meas , vol.24 , pp. 367-381
    • Panerai, R.B.1    Eames, P.J.2    Potter, J.F.3
  • 31
    • 0142011181 scopus 로고    scopus 로고
    • Linearity and non-linearity in cerebral hemodynamics
    • Giller C.A., Mueller M. Linearity and non-linearity in cerebral hemodynamics. Med Eng Phys 2003, 25:633-646.
    • (2003) Med Eng Phys , vol.25 , pp. 633-646
    • Giller, C.A.1    Mueller, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.