메뉴 건너뛰기




Volumn , Issue , 2010, Pages 65-71

Multiple feature-based classifier and its application to image classification

Author keywords

Classification; Classifier fusion; Image data; Multiple feature

Indexed keywords

CLASSIFICATION; CLASSIFICATION ACCURACY; CLASSIFICATION METHODS; CLASSIFICATION RESULTS; CLASSIFIER FUSION; CONFIDENCE LEVELS; FEATURE VECTORS; IMAGE DATA; INDIVIDUAL CLASSIFIERS; LOCAL CLASSIFIER; MULTIPLE FEATURE; MULTIPLE FEATURE-BASED CLASSIFIER;

EID: 79951765381     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2010.82     Document Type: Conference Paper
Times cited : (12)

References (23)
  • 3
    • 77749324915 scopus 로고    scopus 로고
    • Partitioned feature-based classifier model
    • D.C. Park. Partitioned Feature-based Classifier Model. Proc. of ISSPIT, 1:412-417, 2009.
    • (2009) Proc. of ISSPIT , vol.1 , pp. 412-417
    • Park, D.C.1
  • 5
    • 0002196625 scopus 로고
    • Sensor and data fusion concepts and applications
    • Engineering Press, Tutorial Texts
    • L. A. Klein. Sensor and Data Fusion Concepts and Applications. SPIE, Engineering Press, Tutorial Texts, 14, 1993.
    • (1993) SPIE , vol.14
    • Klein, L.A.1
  • 6
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • D.L. Hall and J. Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1):6-23, 1997. (Pubitemid 127745544)
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 6-23
    • Hall, D.L.1    Llinas, J.2
  • 7
    • 34848837283 scopus 로고    scopus 로고
    • Classification of heterogeneous microarray data by maximum entropy kernel
    • W. Fujibuchi and T. Kato. Classification of heterogeneous microarray data by maximum entropy kernel. BMC Bioinformatics, 8:267, 2007.
    • (2007) BMC Bioinformatics , vol.8 , pp. 267
    • Fujibuchi, W.1    Kato, T.2
  • 8
    • 67650999671 scopus 로고    scopus 로고
    • Optimal classifier fusion in a non-Bayesian probabilistic framework
    • O. R. Terrades, E. Valveny, and S. Tabbone. Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework. IEEE Trans. Pat. Ana. and Mach. Intel., 31(9):1630-1644, 2009.
    • (2009) IEEE Trans. Pat. Ana. and Mach. Intel. , vol.31 , Issue.9 , pp. 1630-1644
    • Terrades, O.R.1    Valveny, E.2    Tabbone, S.3
  • 9
    • 0000666461 scopus 로고    scopus 로고
    • Data integration using similarity joins and a wordbased information representation language
    • W. Cohen. Data integration using similarity joins and a wordbased information representation language. ACM Trans. on Inf. Sys., 18(3):288-321, 2000.
    • (2000) ACM Trans. on Inf. Sys. , vol.18 , Issue.3 , pp. 288-321
    • Cohen, W.1
  • 10
    • 78751690500 scopus 로고    scopus 로고
    • Multiple information sources cooperative learning
    • X. Zhu and R. Jin. Multiple information sources cooperative learning. Proc. of IJCAI, 1369-1375, 2009.
    • (2009) Proc. of IJCAI , pp. 1369-1375
    • Zhu, X.1    Jin, R.2
  • 12
  • 14
    • 0034298708 scopus 로고    scopus 로고
    • A mathematical analysis of the DCT coefficient distributions for images
    • E.Y. Lam and J.W. Goodman. A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. on Image Processing, 9(10):1661-1666, 2000.
    • (2000) IEEE Trans. on Image Processing , vol.9 , Issue.10 , pp. 1661-1666
    • Lam, E.Y.1    Goodman, J.W.2
  • 15
    • 33645971612 scopus 로고    scopus 로고
    • A new texture generation method based on pseudo-DCT coefficients
    • H. Li, G. Liu, and Z. Zhang. A new texture generation method based on pseudo-DCT coefficients. IEEE Trans. on Image Processing, 15(5):1300-1312, 2006.
    • (2006) IEEE Trans. on Image Processing , vol.15 , Issue.5 , pp. 1300-1312
    • Li, H.1    Liu, G.2    Zhang, Z.3
  • 16
    • 56349172273 scopus 로고    scopus 로고
    • Image classification using gradient-based fuzzy c-means with divergence measure
    • D.-C. Park and D.M. Woo. Image Classification Using Gradient-based Fuzzy C-Means with Divergence Measure. IEEE Int. Joint Conf. on Neural Networks, 2521-2525, 2008.
    • (2008) IEEE Int. Joint Conf. on Neural Networks , pp. 2521-2525
    • Park, D.-C.1    Woo, D.M.2
  • 17
    • 0027677864 scopus 로고
    • Texture analysis and classification with tree-structured wavelet transform
    • T. Chang and C.C. Kuo. Texture Analysis and Classification with Tree-Structured Wavelet Transform. IEEE Trans. on Image Processing, 2(4):429-441, 1993.
    • (1993) IEEE Trans. on Image Processing , vol.2 , Issue.4 , pp. 429-441
    • Chang, T.1    Kuo, C.C.2
  • 18
    • 48349091109 scopus 로고    scopus 로고
    • Texture analysis and classification with linear regression model based on wavelet transform
    • Z.Z. Wang and J.H. Yong. Texture analysis and classification with linear regression model based on wavelet transform. IEEE Trans. on Image Processing, 17(8), 1421-1430, 2008.
    • (2008) IEEE Trans. on Image Processing , vol.17 , Issue.8 , pp. 1421-1430
    • Wang, Z.Z.1    Yong, J.H.2
  • 20
  • 22
    • 0033731027 scopus 로고    scopus 로고
    • Centroid neural network for unsupervised competitive learning
    • D.-C. Park. Centroid Neural Network for Unsupervised Competitive Learning. IEEE Trans.Neural Networks, 11(2):520-528, 2000.
    • (2000) IEEE Trans.Neural Networks , vol.11 , Issue.2 , pp. 520-528
    • Park, D.-C.1
  • 23
    • 49149129340 scopus 로고    scopus 로고
    • Centroid neural network with a divergence measure for GPDF data clustering
    • D.-C. Park, O.H. Kwon, and J. Chung. Centroid neural network with a divergence measure for GPDF data clustering. IEEE Trans.Neural Networks, 19(6):948-957, 2008.
    • (2008) IEEE Trans.Neural Networks , vol.19 , Issue.6 , pp. 948-957
    • Park, D.-C.1    Kwon, O.H.2    Chung, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.