|
Volumn , Issue , 2010, Pages 486-489
|
Using naive Bayes with AdaBoost to enhance network anomaly intrusion detection
|
Author keywords
AdaBoost; Detection rate; False positive rate; Naive Bayes
|
Indexed keywords
ADABOOST;
ANOMALY DETECTION;
ANOMALY INTRUSION DETECTION;
DETECTION RATE;
DETECTION RATES;
FALSE POSITIVE;
FALSE POSITIVE RATES;
INTRUSION DETECTION SYSTEMS;
MACHINE LEARNING ALGORITHMS;
NAIVE BAYES;
NETWORK ANOMALIES;
NETWORK-BASED;
RANDOM DATA;
SET OF RULES;
TRAFFIC BEHAVIOR;
WEAK LEARNER;
ADAPTIVE BOOSTING;
COMPUTER CRIME;
INTELLIGENT NETWORKS;
INTELLIGENT SYSTEMS;
LEARNING SYSTEMS;
INTRUSION DETECTION;
|
EID: 79951763931
PISSN: None
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ICINIS.2010.133 Document Type: Conference Paper |
Times cited : (28)
|
References (12)
|