메뉴 건너뛰기




Volumn 20, Issue 2, 2011, Pages 297-302

Research of neural network algorithm based on factor analysis and cluster analysis

Author keywords

Artificial neural network (ANN); Cluster analysis (CA); FA CA BP network; Factor analysis (FA)

Indexed keywords

BACKPROPAGATION; CLUSTER ANALYSIS; CLUSTER COMPUTING; CLUSTERING ALGORITHMS; FACTOR ANALYSIS; MULTIVARIANT ANALYSIS; NETWORK ARCHITECTURE;

EID: 79951758300     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0416-2     Document Type: Article
Times cited : (35)

References (20)
  • 1
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • Mccllochw S, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 10(5): 115-133.
    • (1943) Bull Math Biophys , vol.10 , Issue.5 , pp. 115-133
    • McCllochw, S.1    Pitts, W.2
  • 2
    • 70350086738 scopus 로고    scopus 로고
    • Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis by using an artificial neural network model
    • Pradhan B, Lee S (2007) Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis by using an artificial neural network model. Earth Sci Frontier 14(6): 143-152.
    • (2007) Earth Sci Frontier , vol.14 , Issue.6 , pp. 143-152
    • Pradhan, B.1    Lee, S.2
  • 3
    • 76749088419 scopus 로고    scopus 로고
    • Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling
    • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6): 747-759.
    • (2010) Environ Model Softw , vol.25 , Issue.6 , pp. 747-759
    • Pradhan, B.1    Lee, S.2
  • 4
    • 70350074037 scopus 로고    scopus 로고
    • Landslide risk analysis using artificial neural network model focusing on different training sites
    • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11): 1-15.
    • (2009) Int J Phys Sci , vol.3 , Issue.11 , pp. 1-15
    • Pradhan, B.1    Lee, S.2
  • 5
    • 60349103240 scopus 로고    scopus 로고
    • A novel approach to color normalization using neural network
    • Cheng H, Cai X, Min R (2009) A novel approach to color normalization using neural network. Neural Comput Appl 18(3): 237-247.
    • (2009) Neural Comput Appl , vol.18 , Issue.3 , pp. 237-247
    • Cheng, H.1    Cai, X.2    Min, R.3
  • 6
    • 0022471098 scopus 로고
    • Learning representation by back-propagating errors
    • Rumelhart D, Hinton G, Williams R (1986) Learning representation by back-propagating errors. Nature 3(6): 533-536.
    • (1986) Nature , vol.3 , Issue.6 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 7
    • 34447620283 scopus 로고    scopus 로고
    • Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis
    • Zhang Y (2007) Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta 73(1): 68-75.
    • (2007) Talanta , vol.73 , Issue.1 , pp. 68-75
    • Zhang, Y.1
  • 8
    • 34247241164 scopus 로고    scopus 로고
    • Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals
    • Lewis E, Sheridan C, Farrell M et al (2007) Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals. Sens Actuators A Phys 136(1): 28-38.
    • (2007) Sens Actuators A Phys , vol.136 , Issue.1 , pp. 28-38
    • Lewis, E.1    Sheridan, C.2    Farrell, M.3
  • 9
    • 34748852436 scopus 로고    scopus 로고
    • Nonlinear evaluation model based on principal component analysis and neural network
    • He F, Qi H (2007) Nonlinear evaluation model based on principal component analysis and neural network. J Wuhan Uni Techn 29(8): 183-186.
    • (2007) J Wuhan Uni Techn , vol.29 , Issue.8 , pp. 183-186
    • He, F.1    Qi, H.2
  • 10
    • 38149109867 scopus 로고    scopus 로고
    • Artificial neural networks and cluster analysis in landslide susceptibility zonation
    • Melchiorre C, Matteucci M, Azzoni A et al (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94(3-4): 379-400.
    • (2008) Geomorphology , vol.94 , Issue.3-4 , pp. 379-400
    • Melchiorre, C.1    Matteucci, M.2    Azzoni, A.3
  • 11
    • 77954444549 scopus 로고    scopus 로고
    • Neural network forecasting model based on clustering and principle components analysis
    • Lin S, Zhang D, Li W et al (2005) Neural network forecasting model based on clustering and principle components analysis. Mini-Micro Syst 26(12): 2160-2163.
    • (2005) Mini-Micro Syst , vol.26 , Issue.12 , pp. 2160-2163
    • Lin, S.1    Zhang, D.2    Li, W.3
  • 12
    • 36049026524 scopus 로고    scopus 로고
    • Digital image forgery detection using artificial neural network and independent component analysis
    • Gopi E (2007) Digital image forgery detection using artificial neural network and independent component analysis. Appl Math Comput 194(2): 540-543.
    • (2007) Appl Math Comput , vol.194 , Issue.2 , pp. 540-543
    • Gopi, E.1
  • 13
    • 77954433839 scopus 로고    scopus 로고
    • Hyperspectral data classification by independent component analysis and neural network
    • Song J, Feng Y (2006) Hyperspectral data classification by independent component analysis and neural network. Remote Sens Techn Appl 21(2): 115-119.
    • (2006) Remote Sens Techn Appl , vol.21 , Issue.2 , pp. 115-119
    • Song, J.1    Feng, Y.2
  • 14
    • 4244046912 scopus 로고    scopus 로고
    • Spectroscopic quantitation of amino acids by using artificial neural networks combined with factor analysis
    • Pan Z, Pan D, Sun P et al (1997) Spectroscopic quantitation of amino acids by using artificial neural networks combined with factor analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 53(10): 1629-1632.
    • (1997) Spectrochim Acta Part A Mol Biomol Spectrosc , vol.53 , Issue.10 , pp. 1629-1632
    • Pan, Z.1    Pan, D.2    Sun, P.3
  • 15
    • 24944540209 scopus 로고    scopus 로고
    • Pork farm odour modelling using multiple-component multiple-factor analysis and neural networks
    • Janes K, Yang S, Hacker R (2005) Pork farm odour modelling using multiple-component multiple-factor analysis and neural networks. Appl Soft Comput 6(1): 53-61.
    • (2005) Appl Soft Comput , vol.6 , Issue.1 , pp. 53-61
    • Janes, K.1    Yang, S.2    Hacker, R.3
  • 18
    • 0000600340 scopus 로고
    • General intelligence objectively determined and measured
    • Speraman C (1904) General intelligence objectively determined and measured. Am J Psychol 15: 201-293.
    • (1904) Am J Psychol , vol.15 , pp. 201-293
    • Speraman, C.1
  • 19
    • 78649613970 scopus 로고    scopus 로고
    • Beijing: Higher Education Press
    • Shi Z (2009) Neural network. Higher Education Press, Beijing.
    • (2009) Neural Network
    • Shi, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.