메뉴 건너뛰기




Volumn 6, Issue 2, 2011, Pages 162-171

The effects of imputing missing data on ensemble temperature forecasts

Author keywords

Artificial intelligence (AI); Artificial neural network (ANN); Data imputation; Ensemble forecasting; Missing data; Numerical weather prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK (ANN); DATA IMPUTATION; ENSEMBLE FORECASTING; MISSING DATA; NUMERICAL WEATHER PREDICTION;

EID: 79951756342     PISSN: 1796203X     EISSN: None     Source Type: Journal    
DOI: 10.4304/jcp.6.2.162-171     Document Type: Article
Times cited : (15)

References (26)
  • 1
    • 0000784081 scopus 로고
    • Effects of missing data on estimates of monthly mean general circulation statistics
    • Kidson, J.W., and K.E. Trenberth, 1988: Effects of missing data on estimates of monthly mean general circulation statistics, J. Climate, 1, 1261-1275.
    • (1988) J. Climate , vol.1 , pp. 1261-1275
    • Kidson, J.W.1    Trenberth, K.E.2
  • 2
    • 0033400277 scopus 로고    scopus 로고
    • Canadian historical and homogeneous temperature datasets for climate change analyses
    • Vincent, L. A., and D. W. Gullet., 1999: Canadian historical and homogeneous temperature datasets for climate change analyses. International Journal of Climatology. 19, 1375-1388.
    • (1999) International Journal of Climatology , vol.19 , pp. 1375-1388
    • Vincent, L.A.1    Gullet, D.W.2
  • 3
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
    • Schneider, T., 2001: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Climate, 14, 853-871
    • (2001) J. Climate , vol.14 , pp. 853-871
    • Schneider, T.1
  • 4
    • 79951761019 scopus 로고    scopus 로고
    • Missing data imputation through machine learning algorithms
    • S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer-Verlag
    • Richman, M. B., R. B. Trafalis, and I. Adrianto., 2009: Missing data imputation through machine learning algorithms. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer-Verlag, 153-169.
    • (2009) Artificial Intelligence Methods In the Environmental Sciences , pp. 153-169
    • Richman, M.B.1    Trafalis, R.B.2    Adrianto, I.3
  • 5
    • 0020969881 scopus 로고
    • Estimating missing daily maximum and minimum temperatures
    • Kemp, W. P., D. G. Brunell, D.O. Everson, and A. J. Thomson, 1983. Estimating missing daily maximum and minimum temperatures. J. Climate, 22, 1587-1593.
    • (1983) J. Climate , vol.22 , pp. 1587-1593
    • Kemp, W.P.1    Brunell, D.G.2    Everson, D.O.3    Thomson, A.J.4
  • 6
    • 0001737050 scopus 로고
    • The use of Model Output Statistics (MOS) in objective weather forecasting
    • Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203-1211.
    • (1972) J. Appl. Meteor , vol.11 , pp. 1203-1211
    • Glahn, H.R.1    Lowry, D.A.2
  • 8
    • 14744298129 scopus 로고    scopus 로고
    • Operational consensus forecasts
    • Woodcock, F. and C. Engel, 2005: Operational consensus forecasts. Wea. Forecasting 20, 101-111.
    • (2005) Wea. Forecasting , vol.20 , pp. 101-111
    • Woodcock, F.1    Engel, C.2
  • 9
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles, Mon. Wea. Rev., 133, 1155-1174.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3    Polakowski, M.4
  • 10
    • 77953220812 scopus 로고    scopus 로고
    • Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian Model Averaging
    • Fraley, C., A.E. Raftery, and T. Gneiting, 2010: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian Model Averaging, Mon. Wea. Rev., 138, 190-202.
    • (2010) Mon. Wea. Rev , vol.138 , pp. 190-202
    • Fraley, C.1    Raftery, A.E.2    Gneiting, T.3
  • 11
    • 65549129447 scopus 로고    scopus 로고
    • The regime dependence of optimally weighted ensemble model consensus forecasts of surface temperature
    • Greybush, S. J., S.E. Haupt., and G. S. Young., 2008: The regime dependence of optimally weighted ensemble model consensus forecasts of surface temperature. Wea. Forecasting, 23, 1146-1161.
    • (2008) Wea. Forecasting , vol.23 , pp. 1146-1161
    • Greybush, S.J.1    Haupt, S.E.2    Young, G.S.3
  • 12
    • 0036553271 scopus 로고    scopus 로고
    • Aspects of effective mesoscale short-range ensemble forecasting system over the Pacific Northwest
    • Grimit, E.P. and C.F. Mass, 2002: Aspects of effective mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17, 192-205.
    • (2002) Wea. Forecasting , vol.17 , pp. 192-205
    • Grimit, E.P.1    Mass, C.F.2
  • 13
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D.B. (1976) Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 16
    • 79951750730 scopus 로고    scopus 로고
    • Neural network applications to solve forward and inverse problems in atmospheric and oceanic satellite remote sensing
    • S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer-Verlag
    • Krasnopolsky, V. M., 2009: Neural network applications to solve forward and inverse problems in atmospheric and oceanic satellite remote sensing. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer-Verlag, 191-205.
    • (2009) Artificial Intelligence Methods In the Environmental Sciences , pp. 191-205
    • Krasnopolsky, V.M.1
  • 17
    • 79951762504 scopus 로고    scopus 로고
    • Implementing a neural network emulation of a satellite retrieval algorithm
    • S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer-Verlag
    • Young, G. S., 2009: Implementing a neural network emulation of a satellite retrieval algorithm. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer-Verlag, 207-216.
    • (2009) Artificial Intelligence Methods In the Environmental Sciences , pp. 207-216
    • Young, G.S.1
  • 19
    • 0030438938 scopus 로고    scopus 로고
    • A method for producing and evaluating probabilistic forecasts from Ensemble Model Integrations
    • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from Ensemble Model Integrations. J. Climate, 9, 1518-1530.
    • (1996) J. Climate , vol.9 , pp. 1518-1530
    • Anderson, J.L.1
  • 22
    • 0035270069 scopus 로고    scopus 로고
    • Interpretation of rank histograms for verifying ensemble forecasts
    • 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550-560.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 550-560
  • 23
    • 79951728823 scopus 로고    scopus 로고
    • On the effect of correlations on rank histograms: Reliability of temperature and wind-speed forecasts from fine-scale ensemble reforecasts
    • in press
    • Marzban, C., R. Wang, F. Kong, S. Leyton, 2010: On the effect of correlations on rank histograms: Reliability of temperature and wind-speed forecasts from fine-scale ensemble reforecasts, Mon. Wea. Rev., in press.
    • (2010) Mon. Wea. Rev
    • Marzban, C.1    Wang, R.2    Kong, F.3    Leyton, S.4
  • 24
    • 3142779257 scopus 로고    scopus 로고
    • Effects of observation errors on the statistics for ensemble spread and reliability
    • Saetra, O, H. Hersbach, J-R Bidlot and D.S. Richardson, 2004: Effects of observation errors on the statistics for ensemble spread and reliability. Mon. Wea. Rev., 132, 1487-1501.
    • (2004) Mon. Wea. Rev , vol.132 , pp. 1487-1501
    • Saetra, O.1    Hersbach, H.2    Bidlot, J.-R.3    Richardson, D.S.4
  • 25
    • 28144464479 scopus 로고    scopus 로고
    • Alternatives to the chi-square test for evaluating rank histograms from ensemble forecasts
    • Elmore, K.L., 2005: Alternatives to the chi-square test for evaluating rank histograms from ensemble forecasts. Wea. Forecasting, 20, 789-795.
    • (2005) Wea. Forecasting , vol.20 , pp. 789-795
    • Elmore, K.L.1
  • 26
    • 48349118389 scopus 로고    scopus 로고
    • Evaluating rank histograms using decomposition of the chi-square test statistic
    • Jolliffe, I. T., and C. Primo, 2008: Evaluating rank histograms using decomposition of the chi-square test statistic, Mon. Wea. Rev., 136, 2133-2139.
    • (2008) Mon. Wea. Rev , vol.136 , pp. 2133-2139
    • Jolliffe, I.T.1    Primo, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.