메뉴 건너뛰기




Volumn , Issue , 2010, Pages 923-928

Supervised link prediction using multiple sources

Author keywords

Link prediction; Multiple sources; Social network; Supervised learning

Indexed keywords

APPLICATION DOMAINS; AUXILIARY NETWORK; COLLABORATION NETWORK; COMMERCIAL APPLICATIONS; DESIGN SCHEME; FACEBOOK; FEATURE SELECTION; FUNDAMENTAL PROBLEM; LINK PREDICTION; MULTIPLE SOURCE; PATH-BASED; PREDICTION ACCURACY; PROXIMITY NETWORKS; REAL-WORLD; RESEARCH APPROACH; SOCIAL NETWORK; SOCIAL NETWORK ANALYSIS; SOCIAL NETWORKS; TOPOLOGICAL STRUCTURE;

EID: 79951753036     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.112     Document Type: Conference Paper
Times cited : (107)

References (21)
  • 1
    • 10944272139 scopus 로고    scopus 로고
    • Friends and neighbors on the Web
    • DOI 10.1016/S0378-8733(03)00009-1, PII S0378873303000091
    • L. Adamic and E. Adar. Friends and neighbors on the web. Social networks, 25:211-230, 2003. (Pubitemid 36831776)
    • (2003) Social Networks , vol.25 , Issue.3 , pp. 211-230
    • Adamic, L.A.1    Adar, E.2
  • 2
    • 85027388762 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, 2008.
    • (2008) NIPS
    • Bach, F.1
  • 4
    • 71149112100 scopus 로고    scopus 로고
    • Bayesian inference for plackett-luce ranking models
    • J. Guiver and E. Snelson. Bayesian inference for Plackett-Luce ranking models. In ICML, 2009.
    • (2009) ICML
    • Guiver, J.1    Snelson, E.2
  • 5
    • 85020065545 scopus 로고    scopus 로고
    • Discrete temporal models of social networks
    • S. Hanneke, W. Fu, and E. Xing. Discrete temporal models of social networks. Electronic Journal of Statistics, 4(2010) 585-605, 2010.
    • (2010) Electronic Journal of Statistics , vol.4 , Issue.2010 , pp. 585-605
    • Hanneke, S.1    Fu, W.2    Xing, E.3
  • 9
    • 84865071978 scopus 로고    scopus 로고
    • Link prediction based on graph topology: The predictive value of the generalized clustering coefficient
    • Z. Huang. Link prediction based on graph topology: The predictive value of the generalized clustering coefficient. In Workshop on Link Analysis (KDD), 2006.
    • (2006) Workshop on Link Analysis (KDD)
    • Huang, Z.1
  • 10
    • 73449109177 scopus 로고    scopus 로고
    • Link propagation: A fast semi-supervised learning algorithm for link prediction
    • H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda. Link propagation: A fast semi-supervised learning algorithm for link prediction. In SDM, 2009.
    • (2009) SDM
    • Kashima, H.1    Kato, T.2    Yamanishi, Y.3    Sugiyama, M.4    Tsuda, K.5
  • 11
    • 0002827622 scopus 로고
    • A new status index derived from sociometric analysis
    • L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18:39-43, 1953.
    • (1953) Psychometrika , vol.18 , pp. 39-43
    • Katz, L.1
  • 12
    • 71149113555 scopus 로고    scopus 로고
    • Learning spectral graph transformations for link prediction
    • J. Kunegis and A. Lommatzsch. Learning spectral graph transformations for link prediction. In ICML, 2009.
    • (2009) ICML
    • Kunegis, J.1    Lommatzsch, A.2
  • 14
    • 18744398132 scopus 로고    scopus 로고
    • The link prediction problem for social networks
    • D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In CIKM, 2003.
    • (2003) CIKM
    • Liben-Nowell, D.1    Kleinberg, J.2
  • 16
    • 79960601554 scopus 로고    scopus 로고
    • A brief history of generative models for power law and lognormal distributions
    • M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1(2):226-251, 2004.
    • (2004) Internet Mathematics , vol.1 , Issue.2 , pp. 226-251
    • Mitzenmacher, M.1
  • 17
    • 0035420724 scopus 로고    scopus 로고
    • Clustering and preferential attachment in growing networks
    • 025102
    • M. Newman. Clustering and preferential attachment in growing networks. Physical Review E, 64(025102), 2001.
    • (2001) Physical Review E , vol.64
    • Newman, M.1
  • 18
    • 0035648177 scopus 로고    scopus 로고
    • Random graph models for temporal processes in social networks
    • G. Robins and P. Pattison. Random graph models for temporal processes in social networks. Journal of Mathematical Sociology, 25:5-41, 2001. (Pubitemid 33397469)
    • (2001) Journal of Mathematical Sociology , vol.25 , Issue.1 , pp. 5-41
    • Robins, G.1    Pattison, P.2
  • 19
    • 79951738724 scopus 로고    scopus 로고
    • Scalable proximity estimation and link prediction in online social networks
    • H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu. Scalable proximity estimation and link prediction in online social networks. In IMC, 2009.
    • (2009) IMC
    • Song, H.H.1    Cho, T.W.2    Dave, V.3    Zhang, Y.4    Qiu, L.5
  • 21
    • 69949155103 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, 37:3468-3497, 2009.
    • (2009) Annals of Statistics , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.