메뉴 건너뛰기




Volumn , Issue , 2010, Pages 186-195

An extensive empirical study on semi-supervised learning

Author keywords

Bayesian classifiers; Semi supervised learning

Indexed keywords

BASE CLASSIFIERS; BAYESIAN CLASSIFIER; BENCHMARK DATASETS; CO-TRAINING; DATA SETS; EMPIRICAL STUDIES; GRAPH-BASED; LABELED DATA; LEARNING CURVES; LEARNING PROCESS; RANDOM SELECTION; SELF-TRAINING; SEMI-SUPERVISED CLASSIFICATION METHOD; SEMI-SUPERVISED LEARNING; SEMI-SUPERVISED LEARNING METHODS; TRANSDUCTIVE SVM; UNLABELED DATA;

EID: 79951750541     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.66     Document Type: Conference Paper
Times cited : (27)

References (21)
  • 10
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • DOI 10.1109/TKDE.2005.186
    • M. Li and Z. H. Zhou, "Tri-Training: Exploiting unlabeled data using three classifiers," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 11, pp. 1529-1541, 2005. (Pubitemid 41704840)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 13
    • 68949155363 scopus 로고    scopus 로고
    • A self-training approach to cost sensitive uncertainty sampling
    • A. Liu, G. Jun, and J. Ghosh, "A self-training approach to cost sensitive uncertainty sampling," Machine Learning, vol. 76, pp. 257-270, 2009.
    • (2009) Machine Learning , vol.76 , pp. 257-270
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 15
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: An empirical study across techniques and domains
    • N. V. Chawla and G. Karakoulas, "Learning from labeled and unlabeled data: An empirical study across techniques and domains," Journal of Artificial Intelligence Research, vol. 23, pp. 331-366, 2005. (Pubitemid 41525872)
    • (2005) Journal of Artificial Intelligence Research , vol.23 , pp. 331-366
    • Chawla, N.V.1    Karakoulas, G.2
  • 17
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian Network Classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Machine Learning, vol. 29, pp. 131-163, 1997. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 18
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data," Machine Learning, vol. 20, pp. 197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 20
    • 29344462495 scopus 로고    scopus 로고
    • Hidden naive Bayes
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • H. Zhang, L. Jiang, and J. Su, "Hidden Naive Bayes," in Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05). AAAI Press, 2005, pp. 919-924. (Pubitemid 43006725)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 919-924
    • Zhang, H.1    Jiang, L.2    Su, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.