메뉴 건너뛰기




Volumn , Issue , 2010, Pages 314-323

Training Conditional Random Fields using transfer learning for gesture recognition

Author keywords

Conditional Random Fields; Gesture recognition; Semi supervised learning; Transfer learning

Indexed keywords

BASELINE MODELS; CONDITIONAL RANDOM FIELD; DATA SETS; HIDDEN LAYERS; HIGH-LEVEL FEATURES; LABELED AND UNLABELED DATA; LABELED DATA; MAIN TASKS; OVERFITTING; SEMI-SUPERVISED LEARNING; SEQUENCE LABELING; TRANSFER LEARNING;

EID: 79951731724     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.31     Document Type: Conference Paper
Times cited : (8)

References (36)
  • 1
    • 34948881770 scopus 로고    scopus 로고
    • Latent-dynamic discriminative models for continuous gesture recognition
    • Louis-Philippe Morency, Ariadna Quattoni, and Trevor Darrell. Latent-dynamic discriminative models for continuous gesture recognition. In CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Morency, L.-P.1    Quattoni, A.2    Darrell, T.3
  • 2
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John Lafferty, Andrew Mccallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    Mccallum, A.2    Pereira, F.3
  • 3
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 5
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 6
    • 84863373241 scopus 로고    scopus 로고
    • Conditional neural fields
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1419-1427. 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1419-1427
    • Peng, J.1    Bo, L.2    Xu, J.3
  • 10
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • Vancouver, British Columbia, Canada, July
    • Wenyuan Dai, Qiang Yang, Guirong Xue, and Yong Yu. Boosting for transfer learning. In 22rd AAAI Conference on Artificial Intelligence, pages 193-200, Vancouver, British Columbia, Canada, July 2007.
    • (2007) 22rd AAAI Conference on Artificial Intelligence , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.3    Yu, Y.4
  • 11
    • 80053277243 scopus 로고    scopus 로고
    • Composition of conditional random fields for transfer learning
    • Vancouver, British Columbia, Canada, October Association for Computational Linguistics
    • Charles Sutton and Andrew McCallum. Composition of conditional random fields for transfer learning. In Proceedings of HLT/EMNLP, pages 748-754, Vancouver, British Columbia, Canada, October 2005. Association for Computational Linguistics.
    • (2005) Proceedings of HLT/EMNLP , pp. 748-754
    • Sutton, C.1    McCallum, A.2
  • 12
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 13
    • 85015549155 scopus 로고
    • Markov random field models in computer vision
    • Secaucus, NJ, USA Springer-Verlag New York, Inc.
    • S. Z. Li. Markov random field models in computer vision. In ECCV '94: Proceedings of the third European conference on Computer Vision (Vol. II), pages 361-370, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.
    • (1994) ECCV '94: Proceedings of the Third European Conference on Computer Vision , vol.2 , pp. 361-370
    • Li, S.Z.1
  • 18
    • 29244464687 scopus 로고    scopus 로고
    • Information extraction from research papers using conditional random fields
    • DOI 10.1016/j.ipm.2005.09.002, PII S0306457305001172
    • Fuchun Peng and Andrew Mccallum. Information extraction from research papers using conditional random fields. Information Processing & Management, 42(4):963-979, July 2006. (Pubitemid 41828296)
    • (2006) Information Processing and Management , vol.42 , Issue.4 , pp. 963-979
    • Peng, F.1    McCallum, A.2
  • 19
    • 25144520247 scopus 로고    scopus 로고
    • Abner: An open source tool for automatically tagging genes, proteins, and other entity names in text
    • April
    • Burr Settles. Abner: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics, April 2005.
    • (2005) Bioinformatics
    • Settles, B.1
  • 21
    • 27544451563 scopus 로고    scopus 로고
    • RNA secondary structural alignment with conditional random fields
    • DOI 10.1093/bioinformatics/bti1139
    • Kengo Sato and Yasubumi Sakakibara. RNA secondary structural alignment with conditional random fields. Bioinformatics, 21(Suppl. 2):ii237-ii242, 2005. (Pubitemid 41535455)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Sato, K.1    Sakakibara, Y.2
  • 25
    • 33749253818 scopus 로고    scopus 로고
    • Conditional random fields for object recognition
    • Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors Cambridge, MA MIT Press
    • Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object recognition. In Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1097-1104, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1097-1104
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 27
    • 14344255620 scopus 로고    scopus 로고
    • Kernel conditional random fields: Representation and clique selection
    • John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional random fields: representation and clique selection. In ICML, 2004.
    • (2004) ICML
    • Lafferty, J.1    Zhu, X.2    Liu, Y.3
  • 28
    • 70549113875 scopus 로고    scopus 로고
    • Exploiting feature hierarchy for transfer learning in named entity recognition
    • Andrew Arnold, Ramesh Nallapati, and William W. Cohen. Exploiting feature hierarchy for transfer learning in named entity recognition. In In ACL:HLT 08, 2008.
    • (2008) ACL:HLT 08
    • Arnold, A.1    Nallapati, R.2    Cohen, W.W.3
  • 31
    • 84898928156 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors Cambridge, MA MIT Press
    • Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 529-536, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 33
    • 84863393567 scopus 로고    scopus 로고
    • Deep learning with kernel regularization for visual recognition
    • Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou, Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors MIT Press
    • Kai Yu, Wei Xu, and Yihong Gong. Deep learning with kernel regularization for visual recognition. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou, Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, NIPS, pages 1889-1896. MIT Press, 2008.
    • (2008) NIPS , pp. 1889-1896
    • Yu, K.1    Xu, W.2    Gong, Y.3
  • 34
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • Andrew Mccallum and Sam Roweis, editors Omnipress
    • J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In Andrew Mccallum and Sam Roweis, editors, ICML, pages 1168-1175. Omnipress, 2008.
    • (2008) ICML , pp. 1168-1175
    • Weston, J.1    Ratle, F.2    Collobert, R.3
  • 36
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • June
    • Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in video. In ICML, pages 737-744, June 2009.
    • (2009) ICML , pp. 737-744
    • Mobahi, H.1    Collobert, R.2    Weston, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.