-
1
-
-
34948881770
-
Latent-dynamic discriminative models for continuous gesture recognition
-
Louis-Philippe Morency, Ariadna Quattoni, and Trevor Darrell. Latent-dynamic discriminative models for continuous gesture recognition. In CVPR, pages 1-8, 2007.
-
(2007)
CVPR
, pp. 1-8
-
-
Morency, L.-P.1
Quattoni, A.2
Darrell, T.3
-
2
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John Lafferty, Andrew Mccallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
-
(2001)
ICML
, pp. 282-289
-
-
Lafferty, J.1
Mccallum, A.2
Pereira, F.3
-
3
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
DOI 10.1126/science.1127647
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006. (Pubitemid 44148451)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
5
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
6
-
-
84863373241
-
Conditional neural fields
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1419-1427. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1419-1427
-
-
Peng, J.1
Bo, L.2
Xu, J.3
-
10
-
-
34547972773
-
Boosting for transfer learning
-
Vancouver, British Columbia, Canada, July
-
Wenyuan Dai, Qiang Yang, Guirong Xue, and Yong Yu. Boosting for transfer learning. In 22rd AAAI Conference on Artificial Intelligence, pages 193-200, Vancouver, British Columbia, Canada, July 2007.
-
(2007)
22rd AAAI Conference on Artificial Intelligence
, pp. 193-200
-
-
Dai, W.1
Yang, Q.2
Xue, G.3
Yu, Y.4
-
11
-
-
80053277243
-
Composition of conditional random fields for transfer learning
-
Vancouver, British Columbia, Canada, October Association for Computational Linguistics
-
Charles Sutton and Andrew McCallum. Composition of conditional random fields for transfer learning. In Proceedings of HLT/EMNLP, pages 748-754, Vancouver, British Columbia, Canada, October 2005. Association for Computational Linguistics.
-
(2005)
Proceedings of HLT/EMNLP
, pp. 748-754
-
-
Sutton, C.1
McCallum, A.2
-
12
-
-
0031189914
-
Multitask Learning
-
R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997. (Pubitemid 127507169)
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
13
-
-
85015549155
-
Markov random field models in computer vision
-
Secaucus, NJ, USA Springer-Verlag New York, Inc.
-
S. Z. Li. Markov random field models in computer vision. In ECCV '94: Proceedings of the third European conference on Computer Vision (Vol. II), pages 361-370, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.
-
(1994)
ECCV '94: Proceedings of the Third European Conference on Computer Vision
, vol.2
, pp. 361-370
-
-
Li, S.Z.1
-
18
-
-
29244464687
-
Information extraction from research papers using conditional random fields
-
DOI 10.1016/j.ipm.2005.09.002, PII S0306457305001172
-
Fuchun Peng and Andrew Mccallum. Information extraction from research papers using conditional random fields. Information Processing & Management, 42(4):963-979, July 2006. (Pubitemid 41828296)
-
(2006)
Information Processing and Management
, vol.42
, Issue.4
, pp. 963-979
-
-
Peng, F.1
McCallum, A.2
-
19
-
-
25144520247
-
Abner: An open source tool for automatically tagging genes, proteins, and other entity names in text
-
April
-
Burr Settles. Abner: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics, April 2005.
-
(2005)
Bioinformatics
-
-
Settles, B.1
-
21
-
-
27544451563
-
RNA secondary structural alignment with conditional random fields
-
DOI 10.1093/bioinformatics/bti1139
-
Kengo Sato and Yasubumi Sakakibara. RNA secondary structural alignment with conditional random fields. Bioinformatics, 21(Suppl. 2):ii237-ii242, 2005. (Pubitemid 41535455)
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 2
-
-
Sato, K.1
Sakakibara, Y.2
-
25
-
-
33749253818
-
Conditional random fields for object recognition
-
Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors Cambridge, MA MIT Press
-
Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object recognition. In Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1097-1104, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1097-1104
-
-
Quattoni, A.1
Collins, M.2
Darrell, T.3
-
26
-
-
33845593205
-
Hidden conditional random fields for gesture recognition
-
DOI 10.1109/CVPR.2006.132, 1640937, Proceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
-
Sy B. Wang, Ariadna Quattoni, Louis P. Morency, and David Demirdjian. Hidden conditional random fields for gesture recognition. In CVPR, pages 1521-1527, Washington, DC, USA, 2006. IEEE Computer Society. (Pubitemid 44931500)
-
(2006)
Proceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
, vol.2
, pp. 1521-1527
-
-
Sy, B.W.1
Quattoni, A.2
Morency, L.-P.3
Demirdjian, D.4
Darrell, T.5
-
27
-
-
14344255620
-
Kernel conditional random fields: Representation and clique selection
-
John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional random fields: representation and clique selection. In ICML, 2004.
-
(2004)
ICML
-
-
Lafferty, J.1
Zhu, X.2
Liu, Y.3
-
28
-
-
70549113875
-
Exploiting feature hierarchy for transfer learning in named entity recognition
-
Andrew Arnold, Ramesh Nallapati, and William W. Cohen. Exploiting feature hierarchy for transfer learning in named entity recognition. In In ACL:HLT 08, 2008.
-
(2008)
ACL:HLT 08
-
-
Arnold, A.1
Nallapati, R.2
Cohen, W.W.3
-
30
-
-
31844438615
-
Learning from labeled and unlabeled data on a directed graph
-
New York, NY, USA ACM
-
Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning from labeled and unlabeled data on a directed graph. In ICML '05: Proceedings of the 22nd international conference on Machine learning, pages 1036-1043, New York, NY, USA, 2005. ACM.
-
(2005)
ICML '05: Proceedings of the 22nd International Conference on Machine Learning
, pp. 1036-1043
-
-
Zhou, D.1
Huang, J.2
Schölkopf, B.3
-
31
-
-
84898928156
-
Semi-supervised learning by entropy minimization
-
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors Cambridge, MA MIT Press
-
Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 529-536, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 529-536
-
-
Grandvalet, Y.1
Bengio, Y.2
-
32
-
-
84860537772
-
Semi-supervised conditional random fields for improved sequence segmentation and labeling
-
Morristown, NJ, USA Association for Computational Linguistics
-
Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, and Dale Schuurmans. Semi-supervised conditional random fields for improved sequence segmentation and labeling. In ACL '06: Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the ACL, pages 209-216, Morristown, NJ, USA, 2006. Association for Computational Linguistics.
-
(2006)
ACL '06: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL
, pp. 209-216
-
-
Jiao, F.1
Wang, S.2
Lee, C.-H.3
Greiner, R.4
Schuurmans, D.5
-
33
-
-
84863393567
-
Deep learning with kernel regularization for visual recognition
-
Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou, Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors MIT Press
-
Kai Yu, Wei Xu, and Yihong Gong. Deep learning with kernel regularization for visual recognition. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou, Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, NIPS, pages 1889-1896. MIT Press, 2008.
-
(2008)
NIPS
, pp. 1889-1896
-
-
Yu, K.1
Xu, W.2
Gong, Y.3
-
34
-
-
56449119888
-
Deep learning via semi-supervised embedding
-
Andrew Mccallum and Sam Roweis, editors Omnipress
-
J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In Andrew Mccallum and Sam Roweis, editors, ICML, pages 1168-1175. Omnipress, 2008.
-
(2008)
ICML
, pp. 1168-1175
-
-
Weston, J.1
Ratle, F.2
Collobert, R.3
-
35
-
-
0024634603
-
Phoneme recognition using time-delay neural networks
-
DOI 10.1109/29.21701
-
A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3):328-339, August 1989. (Pubitemid 19065785)
-
(1989)
IEEE Transactions on Acoustics, Speech, and Signal Processing
, vol.37
, Issue.3
, pp. 328-339
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.3
Shikano, K.4
Lang, K.J.5
-
36
-
-
71149084945
-
Deep learning from temporal coherence in video
-
June
-
Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learning from temporal coherence in video. In ICML, pages 737-744, June 2009.
-
(2009)
ICML
, pp. 737-744
-
-
Mobahi, H.1
Collobert, R.2
Weston, J.3
|