메뉴 건너뛰기




Volumn 19, Issue 1, 2011, Pages 137-166

Classification as clustering: A pareto cooperative-competitive GP approach

Author keywords

Classification; Coevolution; Genetic programming; Pareto multi objective optimization; Problem decomposition

Indexed keywords

CLASSIFICATION; CLASSIFICATION PERFORMANCE; CLASSIFICATION TASKS; CO-EVOLUTIONARY; COEVOLUTION; COMPETITIVE COEVOLUTION; DATA SETS; EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION; GAUSSIANS; MODEL COMPLEXITY; MULTI OBJECTIVE; NATURAL ENVIRONMENTS; PARETO MULTI-OBJECTIVE OPTIMIZATION; POPULATION-BASED ALGORITHM; PROBLEM DECOMPOSITION; SVM CLASSIFIERS; TEAM MEMBERS;

EID: 79951561922     PISSN: 10636560     EISSN: 15309304     Source Type: Journal    
DOI: 10.1162/EVCO_a_00016     Document Type: Article
Times cited : (18)

References (56)
  • 1
    • 34548100305 scopus 로고    scopus 로고
    • The roles of diversity preservation and mutation in preventing population collapse in multiobjective genetic programming
    • Badran, K. M. S., and Rockett, P. I. (2007). The roles of diversity preservation and mutation in preventing population collapse in multiobjective genetic programming. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Vol. 2, pp. 1551-1557.
    • (2007) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) , vol.2 , pp. 1551-1557
    • Badran, K.M.S.1    Rockett, P.I.2
  • 3
    • 38849166405 scopus 로고    scopus 로고
    • Bottou, L., Chapelle, O., DeCoste, D., and Weston, J. (Eds.), Cambridge, MA: MIT Press
    • Bottou, L., Chapelle, O., DeCoste, D., and Weston, J. (Eds.). (2007). Large-scale kernel machines. Cambridge, MA: MIT Press.
    • (2007) Large-scale Kernel Machines
  • 4
    • 3543081432 scopus 로고    scopus 로고
    • Evolving teams of predictors with linear genetic programming
    • Bremeier, M., and Banzhaf W. (2001). Evolving teams of predictors with linear genetic programming. Genetic Programming and Evolvable Machines, 2(4):381-408.
    • (2001) Genetic Programming and Evolvable Machines , vol.2 , Issue.4 , pp. 381-408
    • Bremeier, M.1    Banzhaf, W.2
  • 5
    • 21044448959 scopus 로고    scopus 로고
    • Learning lessons from the common cold: How reducing parasite virulence improves coevolutionary optimization
    • Cartlidge, J., and Bullock, S. (2002). Learning lessons from the common cold: How reducing parasite virulence improves coevolutionary optimization. In IEEE Congress on Evolutionary Computation, pp. 1420-1425.
    • (2002) IEEE Congress on Evolutionary Computation , pp. 1420-1425
    • Cartlidge, J.1    Bullock, S.2
  • 8
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Chapelle, O., DeCoste, D., and Keerthi, S. (2006). Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7:1493-1515.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1493-1515
    • Chapelle, O.1    Decoste, D.2    Keerthi, S.3
  • 9
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2:267-278.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 10
    • 0028424239 scopus 로고
    • Improved generalization with active learning
    • Cohn, D., Atlas, L., and Ladner, R. (1994). Improved generalization with active learning. Machine Learning, 15:201-221.
    • (1994) Machine Learning , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 11
    • 34248162044 scopus 로고    scopus 로고
    • A monotonic archive for Pareto-coevolution
    • de Jong, E. D. (2007). A monotonic archive for Pareto-coevolution. Evolutionary Computation, 15(1):61-94.
    • (2007) Evolutionary Computation , vol.15 , Issue.1 , pp. 61-94
    • de Jong, E.D.1
  • 12
    • 2542577163 scopus 로고    scopus 로고
    • Ideal evaluation from coevolution
    • de Jong, E. D., and Pollack, J. B. (2004). Ideal evaluation from coevolution. Evolutionary Computation, 12(2):159-192.
    • (2004) Evolutionary Computation , vol.12 , Issue.2 , pp. 159-192
    • de Jong, E.D.1    Pollack, J.B.2
  • 15
    • 80052660819 scopus 로고    scopus 로고
    • Evolving coevolutionary classifiers under large attribute spaces
    • In R. Riolo, U.-M. O'Rielly, and T. McConaghy (Eds.), Berlin: Springer
    • Doucette, J., Lichodzijewski, P., and Heywood, M. I. (2009). Evolving coevolutionary classifiers under large attribute spaces. In R. Riolo, U.-M. O'Rielly, and T. McConaghy (Eds.), Genetic programming theory and practice, Vol. VII (pp. 37-54). Berlin: Springer.
    • (2009) Genetic Programming Theory and Practice , vol.7 , pp. 37-54
    • Doucette, J.1    Lichodzijewski, P.2    Heywood, M.I.3
  • 16
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan, R., Chen, P., and Lin, C. (2005). Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6:1889-1918.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.1    Chen, P.2    Lin, C.3
  • 20
    • 27144540134 scopus 로고    scopus 로고
    • A structure preserving crossover in grammatical evolution
    • Harper, R., and Blair, A. (2005). A structure preserving crossover in grammatical evolution. In IEEE Congress on Evolutionary Computation, Vol. 3, pp. 2537-2544.
    • (2005) IEEE Congress on Evolutionary Computation , vol.3 , pp. 2537-2544
    • Harper, R.1    Blair, A.2
  • 22
    • 0001118093 scopus 로고
    • Coevolving parasites improve simulated evolution as an optimization procedure
    • Hillis, W. D. (1990). Coevolving parasites improve simulated evolution as an optimization procedure. Physica, D 42:228-234.
    • (1990) Physica , vol.42 , pp. 228-234
    • Hillis, W.D.1
  • 23
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C., and Lin, C. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.1    Lin, C.2
  • 27
    • 0742301742 scopus 로고    scopus 로고
    • Learning fromlabeled and unlabeled data using a minimal number of queries
    • Kothari, R., and Jain,V. (2003). Learning fromlabeled and unlabeled data using a minimal number of queries. IEEE Transactions on Neural Networks, 14(6):1496-1505.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 1496-1505
    • Kothari, R.1
  • 28
    • 0036718538 scopus 로고    scopus 로고
    • Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution
    • Kumar, R., and Rockett, P. (2002). Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution. Evolutionary Computation, 10(3):283-314.
    • (2002) Evolutionary Computation , vol.10 , Issue.3 , pp. 283-314
    • Kumar, R.1    Rockett, P.2
  • 29
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 10(3):263-282.
    • (2002) Evolutionary Computation , vol.10 , Issue.3 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 30
    • 79951570512 scopus 로고    scopus 로고
    • Master's thesis, Dalhousie University, Faculty of Computer Science
    • Lemczyk, M. (2006). Pareto-coevolutionary genetic programming classifier. Master's thesis, Dalhousie University, Faculty of Computer Science. Retrieved from http://www.cs.dal.ca/mheywood/Thesis
    • (2006) Pareto-coevolutionary Genetic Programming Classifier
    • Lemczyk, M.1
  • 35
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review. Part 2: Neural network based approaches
    • Markou, M., and Singh, S. (2003). Novelty detection: A review. Part 2: Neural network based approaches. Signal Processing, 83:2499-2521.
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 40
    • 77955883272 scopus 로고    scopus 로고
    • Pareto cooperative-competitive genetic programming: Aclassification benchmarking study
    • In R. Riolo, T. Soule, and B.Worzel (Eds.), Berlin: Springer
    • McIntyre, A. R., and Heywood, M. I. (2008b). Pareto cooperative-competitive genetic programming: Aclassification benchmarking study. In R. Riolo, T. Soule, and B.Worzel (Eds.), Genetic programming theory and practice, Vol. VI, Chap. 4 (pp. 43-60). Berlin: Springer.
    • (2008) Genetic Programming Theory and Practice , vol.6 , pp. 43-60
    • McIntyre, A.R.1    Heywood, M.I.2
  • 41
    • 79951569717 scopus 로고    scopus 로고
    • UCI machine learning repository. Retrieved from
    • Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI machine learning repository. Retrieved from http://mlearn.ics.uci.edu/MLRepository.html
    • (1998)
    • Newman, D.J.1    Hettich, S.2    Blake, C.L.3    Merz, C.J.4
  • 42
    • 2542575116 scopus 로고    scopus 로고
    • Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for Pareto selection
    • Noble, J., and Watson, R. (2001). Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for Pareto selection. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 493-500.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) , pp. 493-500
    • Noble, J.1    Watson, R.2
  • 52
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G. M., and Provost, F. (2003). Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-345.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-345
    • Weiss, G.M.1    Provost, F.2
  • 54
    • 33646532047 scopus 로고    scopus 로고
    • Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification
    • Zhang, M., and Smart, W. (2006). Using Gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern Recognition Letters, 27(11):1266-1274.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.11 , pp. 1266-1274
    • Zhang, M.1    Smart, W.2
  • 56
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comprehensive case study and the strength Pareto approach
    • Zitzler, E., and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comprehensive case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257-271.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.