메뉴 건너뛰기




Volumn 4, Issue , 2008, Pages 154-157

A Kalman filter based approach for outlier detection in sensor networks

Author keywords

Kalman filter; Outlier detection; Sensor networks

Indexed keywords

DATA COLLECTION; LIMITED POWER SUPPLY; NOISY SENSORS; OUTLIER DETECTION; SENSOR DATA; STATE TRANSITIONS;

EID: 79951480511     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CSSE.2008.1240     Document Type: Conference Paper
Times cited : (18)

References (17)
  • 1
    • 79951488037 scopus 로고    scopus 로고
    • G. Box, G.M. Jenkins, and G.C. Reinsel. Time Series Analysis: Forecasting and Control, third edition. Prentice-Hall, 1994.
  • 2
    • 33947612062 scopus 로고    scopus 로고
    • J.W. Branch, B.K. Szymanski, C. Giannella, R. Wolff and H. Kargupta. In-Network Outlier Detection in Wireless Sensor Networks. ICDCS 2006.
  • 3
    • 35048827085 scopus 로고    scopus 로고
    • E. Elnahrawy, B. Nath. Context-Aware Sensors. EWSN 2004, pp. 77-93.
  • 4
    • 3042820611 scopus 로고    scopus 로고
    • C. Guestrin, P. Bodik, R Thibaux, M.A. Paskin and S. Madden. Distributed regression: an efficient framework for modeling sensor network data. IPSN 2004, pp. 1-10.
  • 5
    • 79951500075 scopus 로고    scopus 로고
    • J. Han and M. Kambr. Data Mining: Concepts and Techniques. Higher Education Press. 2003.
  • 6
    • 3142770653 scopus 로고    scopus 로고
    • A. Jain, E.Y. Chang, and Y. Wang. Adaptive Stream Resource Management Using Kalman Filters. SIGMOD 2004, pp. 11-22.
  • 7
    • 34247492538 scopus 로고    scopus 로고
    • D. Janakiram, Adi Mallikarjuna Reddy V and A V U Phani Kumar. Outlier Detection in Wireless Sensor Networks using Bayesian Belief Networks. Communication System Software and Middleware 2006, pp. 1-6.
  • 8
    • 85024429815 scopus 로고    scopus 로고
    • R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME journal of Basic Engineering 1960, pp. 35-45.
  • 9
    • 0036986465 scopus 로고    scopus 로고
    • A.M. Mainwaring, D.E. Culler, J. Polastre, R. Szewczyk, J. Anderson. Wireless sensor networks for habitat monitoring. WSNA 2002, pp. 88-97
  • 10
    • 79951491219 scopus 로고    scopus 로고
    • http://www.omnetpp.org
  • 11
    • 14344259796 scopus 로고    scopus 로고
    • T. Palpanas D. Papadopoulos V. Kalogeraki and D. Gunopulos. Distributed Deviation Detection in Sensor Networks. SIGMOD Record 32(4) 2003, pp. 77-82.
  • 12
    • 85059754274 scopus 로고    scopus 로고
    • D.Shepard. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference 1968, pp. 517-524.
  • 13
    • 85146198379 scopus 로고    scopus 로고
    • S. Subramaniam, T. Palpanas, D. Papadopoulos and V. Kalogeraki, D. Gunopulos. Online Outlier Detection in Sensor Data Using Non-Parametric Models. VLDB 2006, pp. 187-198.
  • 14
    • 33745526711 scopus 로고    scopus 로고
    • D. Tulone, S. Madden. PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks. EWSN 2006, pp. 21-37.
  • 15
    • 79951485047 scopus 로고    scopus 로고
    • G.Welch and G. Bishop. An introduction to the Kalman Filter. ACM SIGGRAPH. 2001.
  • 16
    • 79951469962 scopus 로고    scopus 로고
    • Y Zhuang, L Chen. In-network Outlier Cleaning for Data Collection in Sensor Netwoks. In the First International VLDB Workshop on Clean Databases (CleanDB), 2006.
  • 17
    • 38049044112 scopus 로고    scopus 로고
    • K Zhang, S. Shi, H. Gao, J. Li. Unsupervised Outlier Detection in Sensor Networks Using Aggregation Tree. ADMA 2007, pp. 158-169.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.