|
Volumn 5242 LNCS, Issue PART 2, 2008, Pages 1066-1074
|
Fully Bayesian joint model for MR brain scan tissue and structure segmentation
a,c,d b,d c,d a,d |
Author keywords
[No Author keywords available]
|
Indexed keywords
IMAGE SEGMENTATION;
MAGNETORHEOLOGICAL FLUIDS;
MARKOV PROCESSES;
MEDICAL COMPUTING;
MEDICAL IMAGING;
STRUCTURAL FRAMES;
INTENSITY DISTRIBUTION;
JOINT MODELING;
LOCAL ESTIMATION;
MARKOV RANDOM FIELD MODELS;
MODEL PARAMETERS;
STRUCTURE SEGMENTATION;
SUBCORTICAL STRUCTURES;
THEORETICAL FRAMEWORK;
TISSUE;
ALGORITHM;
ARTICLE;
AUTOMATED PATTERN RECOGNITION;
BAYES THEOREM;
BIOLOGICAL MODEL;
BRAIN;
COMPUTER ASSISTED DIAGNOSIS;
HISTOLOGY;
HUMAN;
IMAGE ENHANCEMENT;
IMAGE SUBTRACTION;
METHODOLOGY;
REPRODUCIBILITY;
SENSITIVITY AND SPECIFICITY;
STATISTICAL MODEL;
ALGORITHMS;
BAYES THEOREM;
BRAIN;
HUMANS;
IMAGE ENHANCEMENT;
IMAGE INTERPRETATION, COMPUTER-ASSISTED;
MODELS, NEUROLOGICAL;
MODELS, STATISTICAL;
PATTERN RECOGNITION, AUTOMATED;
REPRODUCIBILITY OF RESULTS;
SENSITIVITY AND SPECIFICITY;
SUBTRACTION TECHNIQUE;
|
EID: 79551689255
PISSN: 03029743
EISSN: 16113349
Source Type: Book Series
DOI: 10.1007/978-3-540-85990-1_128 Document Type: Conference Paper |
Times cited : (16)
|
References (9)
|