메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 111-139

Bayesian generalized kernel mixed models

Author keywords

Bayesian model averaging; Gaussian processes; Generalized kernel models; Reproducing kernel Hilbert spaces; Silverman's g prior

Indexed keywords

BAYESIAN MODEL AVERAGING; GAUSSIAN PROCESSES; KERNEL MODELS; REPRODUCING KERNEL HILBERT SPACES; SILVERMAN'S G-PRIOR;

EID: 79551678757     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (34)

References (55)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422):669-679, 1993.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.422 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 4
    • 0041939547 scopus 로고    scopus 로고
    • Quantitative convergence assessment for Markov chain Monte Carlo via cusums
    • S. P. Brooks. Quantitative convergence diagnosis for (Pubitemid 128405026)
    • (1998) Statistics and Computing , vol.8 , Issue.3 , pp. 267-274
    • Brooks, S.P.1
  • 5
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • C. M. Carvalho, N. G. Polson, and J. G. Scott. The horseshoe estimator for sparse signals. Biometrika, 97(2):465-480, 2010.
    • (2010) Biometrika , vol.97 , Issue.2 , pp. 465-480
    • Carvalho, C.M.1    Polson, N.G.2    Scott, J.G.3
  • 7
    • 0040843494 scopus 로고    scopus 로고
    • Model-based geostatistics (with discussions)
    • P. J. Diggle, J. A. Tawn, and R. A. Moyeed. Model-based geostatistics (with discussions). Applied Statistics, 47(3):299-350, 1998.
    • (1998) Applied Statistics , vol.47 , Issue.3 , pp. 299-350
    • Diggle, P.J.1    Tawn, J.A.2    Moyeed, R.A.3
  • 9
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • E. I. George and R. E. McCulloch. Approaches for Bayesian variable selection. Statistica Sinica, 7:339-374, 1997. (Pubitemid 127084819)
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-374
    • George, E.I.1    McCulloch, R.E.2
  • 10
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with gaussian process priors
    • DOI 10.1162/neco.2006.18.8.1790
    • M. A. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:1790-1817, 2006. (Pubitemid 44036395)
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 12
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711-732, 1995.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 14
    • 71249130909 scopus 로고    scopus 로고
    • Bayesian lasso regression
    • C. Hans. Bayesian lasso regression. Biometrika, 96(4):835-845, 2009.
    • (2009) Biometrika , vol.96 , Issue.4 , pp. 835-845
    • Hans, C.1
  • 15
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • D. A. Harville. Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358):320-338, 1977.
    • (1977) Journal of the American Statistical Association , vol.72 , Issue.358 , pp. 320-338
    • Harville, D.A.1
  • 17
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • C. C. Holmes and L. Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1):145-168, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 18
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • R. Kohn, M. Smith, and D. Chan. Nonparametric regression using linear combinations of basis functions. Statistics and Computing, 11:313-322, 2001.
    • (2001) Statistics and Computing , vol.11 , pp. 313-322
    • Kohn, R.1    Smith, M.2    Chan, D.3
  • 20
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data
    • Y. Lee, Y. Lin, and G.Wahba. Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association, 99(465):67-81, 2004. (Pubitemid 38545195)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.465 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 21
    • 79551657781 scopus 로고    scopus 로고
    • The Bayesian elastic net
    • Q. Li and N. Lin. The Bayesian elastic net. Bayesian Analysis, 5(1):151-170, 2010.
    • (2010) Bayesian Analysis , vol.5 , Issue.1 , pp. 151-170
    • Li, Q.1    Lin, N.2
  • 24
    • 68149091853 scopus 로고    scopus 로고
    • Nonparametric Bayes kernel-based priors for functional data analysis
    • R. F. MacLehose and D. B. Dunson. Nonparametric Bayes kernel-based priors for functional data analysis. Statistica Sinica, 19:611-629, 2009.
    • (2009) Statistica Sinica , vol.19 , pp. 611-629
    • MacLehose, R.F.1    Dunson, D.B.2
  • 29
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using Gaussian process priors (with discussion)
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors. Oxford University Press
    • R. M. Neal. Regression and classification using Gaussian process priors (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics, volume 6, pages 475-501. Oxford University Press, 1999.
    • (1999) Bayesian Statistics , vol.6 , pp. 475-501
    • Neal, R.M.1
  • 33
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959, 2005. (Pubitemid 41798128)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1939-1959
    • Quinonero-Candela, J.1    Rasmussen, C.E.2
  • 36
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • DOI 10.1023/A:1007618119488
    • G. Rätsch, T. Onoda, and K. Müller. Soft margins for Adaboost. Machine Learning, 42:287-320, 2001. (Pubitemid 32188795)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 38
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion)
    • B. W. Silverman. Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). Journal of the Royal Statistical Society, Series B, 47(1):1-52, 1985.
    • (1985) Journal of the Royal Statistical Society, Series B , vol.47 , Issue.1 , pp. 1-52
    • Silverman, B.W.1
  • 39
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • M. Smith and R. Kohn. Nonparametric regression using Bayesian variable selection. Journal of Econometrics, 75:317-344, 1996.
    • (1996) Journal of Econometrics , vol.75 , pp. 317-344
    • Smith, M.1    Kohn, R.2
  • 43
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • P. Sollich. Bayesian methods for support vector machines: evidence and predictive class probabilities. Machine Learning, 46:21-52, 2001.
    • (2001) Machine Learning , vol.46 , pp. 21-52
    • Sollich, P.1
  • 45
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 48
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, editors. Oxford University Press
    • M. West. Bayesian factor regression models in the "large p, small n" paradigm. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, editors, Bayesian Statistics 7, pages 723-732. Oxford University Press, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 51
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • P. K. Goel and A. Zellner, editors. North-Holland, Amsterdam
    • A. Zellner. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. K. Goel and A. Zellner, editors, Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, pages 233-243. North-Holland, Amsterdam, 1986.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti , pp. 233-243
    • Zellner, A.1
  • 53
    • 36348951585 scopus 로고    scopus 로고
    • Semiparametric regression using student t processes
    • DOI 10.1109/TNN.2007.899736
    • Z. Zhang, G. Wu, and E. Y Chang. Semiparametric regression using Student t processes. IEEE Transactions on Neural Networks, 18(6):1572-1588, 2007. (Pubitemid 350148413)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1572-1588
    • Zhang, Z.1    Wu, G.2    Chang, E.Y.3
  • 55
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • DOI 10.1198/106186005X25619
    • J. Zhu and T. Hastie. Kernel logistic regression and the import vector machines. Journal of Computational and Graphical Statistics, 14(1):185-205, 2005. (Pubitemid 40447832)
    • (2005) Journal of Computational and Graphical Statistics , vol.14 , Issue.1 , pp. 185-205
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.