-
2
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the Twenty-first International Conference on Machine Learning, 2004.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
4
-
-
0041939547
-
Quantitative convergence assessment for Markov chain Monte Carlo via cusums
-
S. P. Brooks. Quantitative convergence diagnosis for (Pubitemid 128405026)
-
(1998)
Statistics and Computing
, vol.8
, Issue.3
, pp. 267-274
-
-
Brooks, S.P.1
-
5
-
-
77952811536
-
The horseshoe estimator for sparse signals
-
C. M. Carvalho, N. G. Polson, and J. G. Scott. The horseshoe estimator for sparse signals. Biometrika, 97(2):465-480, 2010.
-
(2010)
Biometrika
, vol.97
, Issue.2
, pp. 465-480
-
-
Carvalho, C.M.1
Polson, N.G.2
Scott, J.G.3
-
6
-
-
36348946698
-
-
Technical report, Department of Statistics, University of Florida
-
S. Chakraborty, M. Ghosh, and B. K. Mallick. Bayesian nonlinear regression for large p small n problems. Technical report, Department of Statistics, University of Florida, 2005.
-
(2005)
Bayesian Nonlinear Regression for Large P Small N Problems
-
-
Chakraborty, S.1
Ghosh, M.2
Mallick, B.K.3
-
7
-
-
0040843494
-
Model-based geostatistics (with discussions)
-
P. J. Diggle, J. A. Tawn, and R. A. Moyeed. Model-based geostatistics (with discussions). Applied Statistics, 47(3):299-350, 1998.
-
(1998)
Applied Statistics
, vol.47
, Issue.3
, pp. 299-350
-
-
Diggle, P.J.1
Tawn, J.A.2
Moyeed, R.A.3
-
9
-
-
0031526204
-
Approaches for Bayesian variable selection
-
E. I. George and R. E. McCulloch. Approaches for Bayesian variable selection. Statistica Sinica, 7:339-374, 1997. (Pubitemid 127084819)
-
(1997)
Statistica Sinica
, vol.7
, Issue.2
, pp. 339-374
-
-
George, E.I.1
McCulloch, R.E.2
-
10
-
-
33745841370
-
Variational Bayesian multinomial probit regression with gaussian process priors
-
DOI 10.1162/neco.2006.18.8.1790
-
M. A. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:1790-1817, 2006. (Pubitemid 44036395)
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
12
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711-732, 1995.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
14
-
-
71249130909
-
Bayesian lasso regression
-
C. Hans. Bayesian lasso regression. Biometrika, 96(4):835-845, 2009.
-
(2009)
Biometrika
, vol.96
, Issue.4
, pp. 835-845
-
-
Hans, C.1
-
15
-
-
84890913931
-
Maximum likelihood approaches to variance component estimation and to related problems
-
D. A. Harville. Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358):320-338, 1977.
-
(1977)
Journal of the American Statistical Association
, vol.72
, Issue.358
, pp. 320-338
-
-
Harville, D.A.1
-
16
-
-
0003684449
-
-
Springer-Verlag, New York
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
17
-
-
84867151416
-
Bayesian auxiliary variable models for binary and multinomial regression
-
C. C. Holmes and L. Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1):145-168, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.1
, pp. 145-168
-
-
Holmes, C.C.1
Held, L.2
-
18
-
-
0010081155
-
Nonparametric regression using linear combinations of basis functions
-
R. Kohn, M. Smith, and D. Chan. Nonparametric regression using linear combinations of basis functions. Statistics and Computing, 11:313-322, 2001.
-
(2001)
Statistics and Computing
, vol.11
, pp. 313-322
-
-
Kohn, R.1
Smith, M.2
Chan, D.3
-
20
-
-
2142775432
-
Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data
-
Y. Lee, Y. Lin, and G.Wahba. Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association, 99(465):67-81, 2004. (Pubitemid 38545195)
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.465
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
21
-
-
79551657781
-
The Bayesian elastic net
-
Q. Li and N. Lin. The Bayesian elastic net. Bayesian Analysis, 5(1):151-170, 2010.
-
(2010)
Bayesian Analysis
, vol.5
, Issue.1
, pp. 151-170
-
-
Li, Q.1
Lin, N.2
-
22
-
-
42349089655
-
Mixtures of g-priors for Bayesian variable selection
-
F. Liang, R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger. Mixtures of g-priors for Bayesian variable selection. Journal of the American Statistical Association, 103(481):410-423, 2008.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.481
, pp. 410-423
-
-
Liang, F.1
Paulo, R.2
Molina, G.3
Clyde, M.A.4
Berger, J.O.5
-
23
-
-
68149134506
-
-
Discussion Paper 2005-09, Duke University ISDS
-
F. Liang, K. Mao, M. Liao, R. F. MacLehose, and D. B. Dunson. Nonparametric Bayesian kernel models. In Discussion Paper 2005-09, Duke University ISDS, 2009.
-
(2009)
Nonparametric Bayesian Kernel Models
-
-
Liang, F.1
Mao, K.2
Liao, M.3
MacLehose, R.F.4
Dunson, D.B.5
-
24
-
-
68149091853
-
Nonparametric Bayes kernel-based priors for functional data analysis
-
R. F. MacLehose and D. B. Dunson. Nonparametric Bayes kernel-based priors for functional data analysis. Statistica Sinica, 19:611-629, 2009.
-
(2009)
Statistica Sinica
, vol.19
, pp. 611-629
-
-
MacLehose, R.F.1
Dunson, D.B.2
-
25
-
-
16244388597
-
Bayesian classification of tumours by using gene expression data
-
DOI 10.1111/j.1467-9868.2005.00498.x
-
B. K. Mallick, D. Ghosh, and M. Ghosh. Bayesian classification of tumours by using gene expression data. Journal of the Royal Statistical Society Series B, 67:219-234, 2005. (Pubitemid 40465872)
-
(2005)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.67
, Issue.2
, pp. 219-234
-
-
Mallick, B.K.1
Ghosh, D.2
Ghosh, M.3
-
29
-
-
0002628667
-
Regression and classification using Gaussian process priors (with discussion)
-
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors. Oxford University Press
-
R. M. Neal. Regression and classification using Gaussian process priors (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics, volume 6, pages 475-501. Oxford University Press, 1999.
-
(1999)
Bayesian Statistics
, vol.6
, pp. 475-501
-
-
Neal, R.M.1
-
32
-
-
34547900221
-
Characterizing the function space for bayesian kernel models
-
N. S. Pillai, Q. Wu, F. Liang, S. Mukherjee, and R. L. Wolpert. Characterizing the function space for Bayesian kernel models. Journal of Machine Learning Research, 8:1769-1797, 2007. (Pubitemid 47258008)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1769-1797
-
-
Pillai, N.S.1
Wu, Q.2
Liang, F.3
Mukherjee, S.4
Wolpert, R.L.5
-
33
-
-
29144453489
-
A unifying view of sparse approximate Gaussian process regression
-
J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959, 2005. (Pubitemid 41798128)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1939-1959
-
-
Quinonero-Candela, J.1
Rasmussen, C.E.2
-
36
-
-
0342502195
-
Soft margins for AdaBoost
-
DOI 10.1023/A:1007618119488
-
G. Rätsch, T. Onoda, and K. Müller. Soft margins for Adaboost. Machine Learning, 42:287-320, 2001. (Pubitemid 32188795)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
37
-
-
4444239427
-
Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage
-
DOI 10.1111/j.0006-341X.2004.00233.x
-
N. Sha, M. Vannucci, M. G. Tadesse, P. J. Brown, I. Dragoni, N. Davies T. C. Roberts, A. Contestabile, M. Salmon, C. Buckley, and F. Falciani. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics, 60:812-819, 2004. (Pubitemid 39181128)
-
(2004)
Biometrics
, vol.60
, Issue.3
, pp. 812-819
-
-
Sha, N.1
Vannucci, M.2
Tadesse, M.G.3
Brown, P.J.4
Dragoni, I.5
Davies, N.6
Roberts, T.C.7
Contestabile, A.8
Salmon, M.9
Buckley, C.10
Falciani, F.11
-
38
-
-
0001995852
-
Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion)
-
B. W. Silverman. Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). Journal of the Royal Statistical Society, Series B, 47(1):1-52, 1985.
-
(1985)
Journal of the Royal Statistical Society, Series B
, vol.47
, Issue.1
, pp. 1-52
-
-
Silverman, B.W.1
-
39
-
-
0000824232
-
Nonparametric regression using Bayesian variable selection
-
M. Smith and R. Kohn. Nonparametric regression using Bayesian variable selection. Journal of Econometrics, 75:317-344, 1996.
-
(1996)
Journal of Econometrics
, vol.75
, pp. 317-344
-
-
Smith, M.1
Kohn, R.2
-
43
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
P. Sollich. Bayesian methods for support vector machines: evidence and predictive class probabilities. Machine Learning, 46:21-52, 2001.
-
(2001)
Machine Learning
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
45
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
48
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, editors. Oxford University Press
-
M. West. Bayesian factor regression models in the "large p, small n" paradigm. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, editors, Bayesian Statistics 7, pages 723-732. Oxford University Press, 2003.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 723-732
-
-
West, M.1
-
51
-
-
0002817906
-
On assessing prior distributions and Bayesian regression analysis with g-prior distributions
-
P. K. Goel and A. Zellner, editors. North-Holland, Amsterdam
-
A. Zellner. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. K. Goel and A. Zellner, editors, Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, pages 233-243. North-Holland, Amsterdam, 1986.
-
(1986)
Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti
, pp. 233-243
-
-
Zellner, A.1
-
53
-
-
36348951585
-
Semiparametric regression using student t processes
-
DOI 10.1109/TNN.2007.899736
-
Z. Zhang, G. Wu, and E. Y Chang. Semiparametric regression using Student t processes. IEEE Transactions on Neural Networks, 18(6):1572-1588, 2007. (Pubitemid 350148413)
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.6
, pp. 1572-1588
-
-
Zhang, Z.1
Wu, G.2
Chang, E.Y.3
-
55
-
-
15944424353
-
Kernel logistic regression and the import vector machine
-
DOI 10.1198/106186005X25619
-
J. Zhu and T. Hastie. Kernel logistic regression and the import vector machines. Journal of Computational and Graphical Statistics, 14(1):185-205, 2005. (Pubitemid 40447832)
-
(2005)
Journal of Computational and Graphical Statistics
, vol.14
, Issue.1
, pp. 185-205
-
-
Zhu, J.1
Hastie, T.2
|