메뉴 건너뛰기




Volumn 8, Issue 2, 2011, Pages 353-367

A Markov-blanket-based model for gene regulatory network inference

Author keywords

causal modeling; Cause effect analysis; gene regulatory network; genetic algorithms; microarray gene expression data; network inference

Indexed keywords

CAUSAL MODELING; CAUSE-EFFECT ANALYSIS; GENE REGULATORY NETWORKS; MICROARRAY GENE EXPRESSION DATA; NETWORK INFERENCE;

EID: 79551674699     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2009.70     Document Type: Article
Times cited : (26)

References (35)
  • 1
    • 8444245968 scopus 로고    scopus 로고
    • Temporal aggregation bias and inference of causal regulatory networks
    • S. Bay, L. Chrisman, A. Pohorille, and J. Shrager, "Temporal Aggregation Bias and Inference of Causal Regulatory Networks," J. Computational Biology, vol. 11, pp. 971-985, 2004.
    • (2004) J. Computational Biology , vol.11 , pp. 971-985
    • Bay, S.1    Chrisman, L.2    Pohorille, A.3    Shrager, J.4
  • 3
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • P. D'haseleer, S. Liang, and R. Somogoyi, "Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering," Bioinformatics, vol. 16, pp. 707-726, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haseleer, P.1    Liang, S.2    Somogoyi, R.3
  • 4
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular network using probabilistic graphical models
    • N. Friedman, "Inferring Cellular Network Using Probabilistic Graphical Models," Science, vol. 33, pp. 799-805, 2004.
    • (2004) Science , vol.33 , pp. 799-805
    • Friedman, N.1
  • 5
    • 34548299801 scopus 로고    scopus 로고
    • Bayesian orthogonal least squares (bols) algorithm for reverse engineering of gene regulatory networks
    • article no. 251
    • C.S. Kim, "Bayesian Orthogonal Least Squares (BOLS) Algorithm for Reverse Engineering of Gene Regulatory Networks," BMC Bioinformatics, vol. 8, article no. 251, 2007.
    • (2007) BMC Bioinformatics , vol.8
    • Kim, C.S.1
  • 6
    • 58149349958 scopus 로고    scopus 로고
    • Learning transcrip-tional regulatory networks from high throughput gene expression data using continuous three-way mutual information
    • article no. 467
    • W. Luo, K.D. Hankenson, and P.J. Woolf, "Learning Transcrip-tional Regulatory Networks from High Throughput Gene Expression Data Using Continuous Three-Way Mutual Information," BMC Bioinformatics, vol. 9, article no. 467, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Luo, W.1    Hankenson, K.D.2    Woolf, P.J.3
  • 9
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • A.J. Butte and I.S. Kohane, "Mutual Information Relevance Networks: Functional Genomic Clustering Using Pairwise Entropy Measurements," Proc. Pacific Symp. Biocomputing, pp. 418-429, 2000.
    • (2000) Proc. Pacific Symp. Biocomputing , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 10
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes, "Discovery of Meaningful Associations in Genomic Data Using Partial Correlation Coefficients," Bioinformatics, vol. 20, pp. 3565-3574, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • De La Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 11
    • 0034570871 scopus 로고    scopus 로고
    • Correspondence analysis of genes and tissue types and finding genetic links from microarray data
    • H. Kishino and P.J. Waddell, "Correspondence Analysis of Genes and Tissue Types and Finding Genetic Links from Microarray Data," Proc. Workshop Genome Informatics, pp. 83-95, 2000.
    • (2000) Proc. Workshop Genome Informatics , pp. 83-95
    • Kishino, H.1    Waddell, P.J.2
  • 12
    • 27844482652 scopus 로고    scopus 로고
    • Estimating genomic coexpression networks using first-order conditional independence
    • P.M. Magwene and J. Kim, "Estimating Genomic Coexpression Networks Using First-Order Conditional Independence," Genome Biology, vol. 5, no. 12, p. R100, 2004.
    • (2004) Genome Biology , vol.5 , Issue.12
    • Magwene, P.M.1    Kim, J.2
  • 13
    • 15944364151 scopus 로고    scopus 로고
    • An empirical bayes approach to inferring large-scale gene association networks
    • J. Schäfer and K. Strimmer, "An Empirical Bayes Approach to Inferring Large-Scale Gene Association Networks," Bioinformatics, vol. 21, pp. 754-764, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 14
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Z. Bar-Joseph, "Analyzing Time Series Gene Expression Data," Bioinformatics, vol. 20, no. 16, pp. 2493-503, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2493-503
    • Bar-Joseph, Z.1
  • 15
    • 67649850798 scopus 로고    scopus 로고
    • Causality: Models
    • Cambridge Univ. Press
    • J. Pearl, Causality: Models, Reasoning and Inference. Cambridge Univ. Press, 2000.
    • (2000) Reasoning and Inference
    • Pearl, J.1
  • 16
    • 0003945695 scopus 로고    scopus 로고
    • Cause and correlation in biology: A user's guide to path analysis
    • Cambridge Univ. Press
    • B. Shipley, Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference. Cambridge Univ. Press, 2002.
    • (2002) Structural Equations and Causal Inference
    • Shipley, B.1
  • 19
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • N. Guelzim, S. Bottani, P. Bourgine, and F. Kepes, "Topological and Causal Structure of the Yeast Transcriptional Regulatory Network," Nature Genetics, vol. 31, pp. 60-63, 2002.
    • (2002) Nature Genetics , vol.31 , pp. 60-63
    • Guelzim, N.1    Bottani, S.2    Bourgine, P.3    Kepes, F.4
  • 21
    • 38349006842 scopus 로고    scopus 로고
    • Framework for path analysis for learning gene regulatory network
    • Springer
    • R. Ram and M. Chetty, "Framework for Path Analysis for Learning Gene Regulatory Network," Lecture Notes in Bioinfor-matics, pp. 264-273, Springer, 2007.
    • (2007) Lecture Notes in Bioinfor-matics , pp. 264-273
    • Ram, R.1    Chetty, M.2
  • 22
    • 2942694772 scopus 로고    scopus 로고
    • Artificial gene networks for objective comparison of analysis algorithms
    • P. Mendes, W. Sha, and K. Ye, "Artificial Gene Networks for Objective Comparison of Analysis Algorithms," Bioinformatics, vol. 19, pp. 122-129, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 122-129
    • Mendes, P.1    Sha, W.2    Ye, K.3
  • 23
    • 57049173377 scopus 로고    scopus 로고
    • Generating synthetic gene regulatory networks
    • Springer
    • R. Ram and M. Chetty, "Generating Synthetic Gene Regulatory Networks," Lecture Notes in Bioinformatics, pp. 237-249, Springer, 2008.
    • (2008) Lecture Notes in Bioinformatics , pp. 237-249
    • Ram, R.1    Chetty, M.2
  • 24
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling
    • H. Toh and K. Horimoto, "Inference of a Genetic Network by a Combined Approach of Cluster Analysis and Graphical Gaussian Modeling," Bioinformatics, vol. 18, pp. 287-297, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 26
  • 27
    • 0036900861 scopus 로고    scopus 로고
    • Transcriptional regulatory networks and the yeast cell cycle
    • B. Futcher, "Transcriptional Regulatory Networks and the Yeast Cell Cycle," Current Opinion in Cell Biology, vol. 14, pp. 676-683, 2002.
    • (2002) Current Opinion in Cell Biology , vol.14 , pp. 676-683
    • Futcher, B.1
  • 28
    • 13444306676 scopus 로고    scopus 로고
    • CYGD: The comprehensive yeast genome database
    • U. Güldener et al., "CYGD: The Comprehensive Yeast Genome Database," Nucleic Acids Research, vol. 33, pp. D364-D368, 2005.
    • (2005) Nucleic Acids Research , vol.33
    • Güldener, U.1
  • 31
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • T.S. Gardner et al., "Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling," Science, vol. 301, pp. 102-105, 2003.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1
  • 32
    • 0038349948 scopus 로고    scopus 로고
    • Sequencing and comparison of yeast species to identify genes and regulatory elements
    • M. Kellis et al., "Sequencing and Comparison of Yeast Species to Identify Genes and Regulatory Elements," Nature, vol. 423, pp. 241-254, 2003.
    • (2003) Nature , vol.423 , pp. 241-254
    • Kellis, M.1
  • 33
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller, and N. Friedman, "Module Networks: Identifying Regulatory Modules and Their Condition-Specific Regulators from Gene Expression Data," Nature Genetics, vol. 34, pp. 166-176, 2003.
    • (2003) Nature Genetics , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'Er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 35
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint based analysis of a genome-scale reconstructed metabolic network
    • I. Famili, J. Forster, J. Nielsen, B.O. Palsson, "Saccharomyces Cerevisiae Phenotypes can be Predicted by Using Constraint Based Analysis of a Genome-Scale Reconstructed Metabolic Network," Proc. Nat'l Academy Sciences USA, vol. 100, pp. 13134-13139, 2003.
    • (2003) Proc. Nat'l Academy Sciences USA , vol.100 , pp. 13134-13139
    • Famili, I.1    Forster, J.2    Nielsen, J.3    Palsson, B.O.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.