-
6
-
-
0037064231
-
Potassium channels: Structures, models, simulations
-
Sansom, M. S. P., I. H. Shrivastava, P. C. Biggin. 2002. Potassium channels: structures, models, simulations. Biochim. Biophys. Acta. 1565:294-307.
-
(2002)
Biochim. Biophys. Acta
, vol.1565
, pp. 294-307
-
-
Sansom, M.S.P.1
Shrivastava, I.H.2
Biggin, P.C.3
-
7
-
-
2542507334
-
Permeation in ion channels: The interplay of structure and theory
-
Miloshevsky, G. V., and P. C. Jordan. 2004. Permeation in ion channels: the interplay of structure and theory. Trends Neurosci. 27:308-314.
-
(2004)
Trends Neurosci.
, vol.27
, pp. 308-314
-
-
Miloshevsky, G.V.1
Jordan, P.C.2
-
8
-
-
20544431525
-
Ion conduction and selectivity in K (+) channels
-
Roux, B. 2005. Ion conduction and selectivity in K (+) channels. Annu. Rev. Biophys. Biomol. Struct. 34:153-171.
-
(2005)
Annu. Rev. Biophys. Biomol. Struct.
, vol.34
, pp. 153-171
-
-
Roux, B.1
-
9
-
-
34547092180
-
Molecular dynamics simulations of potassium channels
-
Domene, C. 2007. Molecular dynamics simulations of potassium channels. Cent. Eur. J. Chem. 5:653-671.
-
(2007)
Cent. Eur. J. Chem.
, vol.5
, pp. 653-671
-
-
Domene, C.1
-
10
-
-
34250333069
-
+ channels is due to topological control of the permeant ion's coordinated state
-
+ channels is due to topological control of the permeant ion's coordinated state. Proc. Natl. Acad. Sci. USA. 104:9260-9265.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 9260-9265
-
-
Bostick, D.L.1
Brooks III, C.L.2
-
11
-
-
34548262701
-
Tuning ion coordination architectures to enable selective partitioning
-
Varma, S., and S. B. Rempe. 2007. Tuning ion coordination architectures to enable selective partitioning. Biophys. J. 93:1093-1099.
-
(2007)
Biophys. J.
, vol.93
, pp. 1093-1099
-
-
Varma, S.1
Rempe, S.B.2
-
13
-
-
85051912836
-
Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore
-
Thompson, A. N., I. Kim, C. M. Nimigean. 2009. Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore. Nat. Struct. Mol. Biol. 16:35-41.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 35-41
-
-
Thompson, A.N.1
Kim, I.2
Nimigean, C.M.3
-
14
-
-
0034690250
-
Ion permeation mechanism of the potassium channel
-
Åqvist, J., and V. Luzhkov. 2000. Ion permeation mechanism of the potassium channel. Nature. 404:881-884.
-
(2000)
Nature
, vol.404
, pp. 881-884
-
-
Åqvist, J.1
Luzhkov, V.2
-
15
-
-
0034730689
-
A computational study of ion binding and protonation states in the KcsA potassium channel
-
Luzhkov, V. B., and J. Åqvist. 2000. A computational study of ion binding and protonation states in the KcsA potassium channel. Biochim. Biophys. Acta. 1481:360-370.
-
(2000)
Biochim. Biophys. Acta
, vol.1481
, pp. 360-370
-
-
Luzhkov, V.B.1
Åqvist, J.2
-
18
-
-
0032708637
-
Permeation of ions across the potassium channel: Brownian dynamics studies
-
Chung, S. H., T. W. Allen, S. Kuyucak. 1999. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77:2517-2533.
-
(1999)
Biophys. J.
, vol.77
, pp. 2517-2533
-
-
Chung, S.H.1
Allen, T.W.2
Kuyucak, S.3
-
19
-
-
0036151669
-
Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations
-
Chung, S. H., T. W. Allen, and S. Kuyucak. 2002. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J. 82:628-645.
-
(2002)
Biophys. J.
, vol.82
, pp. 628-645
-
-
Chung, S.H.1
Allen, T.W.2
Kuyucak, S.3
-
23
-
-
32844467750
-
A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study
-
Hellgren, M., L. Sandberg, and O. Edholm. 2006. A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study. Biophys. Chem. 120:1-9.
-
(2006)
Biophys. Chem.
, vol.120
, pp. 1-9
-
-
Hellgren, M.1
Sandberg, L.2
Edholm, O.3
-
24
-
-
33947709389
-
Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: A comparative study
-
Haider, S., S. Khalid, M. S. Sansom. 2007. Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study. Biochemistry. 46:3643-3652.
-
(2007)
Biochemistry
, vol.46
, pp. 3643-3652
-
-
Haider, S.1
Khalid, S.2
Sansom, M.S.3
-
26
-
-
23244456428
-
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel
-
Long, S. B., E. B. Campbell, and R. Mackinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 309:897-903.
-
(2005)
Science
, vol.309
, pp. 897-903
-
-
Long, S.B.1
Campbell, E.B.2
Mackinnon, R.3
-
27
-
-
36248982122
-
+ channel in a lipid membrane-like environment
-
+ channel in a lipid membrane-like environment. Nature. 450:376-382.
-
(2007)
Nature
, vol.450
, pp. 376-382
-
-
Long, S.B.1
Tao, X.2
MacKinnon, R.3
-
28
-
-
33746725967
-
Molecular restraints in the permeation pathway of ion channels
-
Treptow, W., and M. Tarek. 2006. Molecular restraints in the permeation pathway of ion channels. Biophys. J. 91: L26-L28.
-
(2006)
Biophys. J.
, vol.91
-
-
Treptow, W.1
Tarek, M.2
-
29
-
-
33751229926
-
+ conduction in the selectivity filter of potassium channels is monitored by the charge distribution along their sequence
-
+ conduction in the selectivity filter of potassium channels is monitored by the charge distribution along their sequence. Biophys. J. 91: L81-L83.
-
(2006)
Biophys. J.
, vol.91
-
-
Treptow, W.1
Tarek, M.2
-
30
-
-
68049122041
-
Importance of the peptide backbone description in modeling the selectivity filter in potassium channels
-
Baştuǧ, T, and S. Kuyucak. 2009. Importance of the peptide backbone description in modeling the selectivity filter in potassium channels. Biophys. J. 96:4006-4012.
-
(2009)
Biophys. J.
, vol.96
, pp. 4006-4012
-
-
Baştuǧ, T.1
Kuyucak, S.2
-
31
-
-
0041784950
-
All-atom empirical potential for molecular modeling and dynamics studies of proteins
-
MacKerell, Jr., A. D., D. Bashford, M. Karplus. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102:3586-3616.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 3586-3616
-
-
MacKerell Jr., A.D.1
Bashford, D.2
Karplus, M.3
-
32
-
-
3142714765
-
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
-
Mackerell, Jr., A. D., M. Feig, and C. L. Brooks, 3rd. 2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400-1415.
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1400-1415
-
-
Mackerell Jr., A.D.1
Feig, M.2
Brooks III, C.L.3
-
33
-
-
4444351490
-
Empirical force fields for biological macromolecules: Overview and issues
-
Mackerell, Jr., A. D. 2004. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25:1584-1604.
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1584-1604
-
-
Mackerell Jr., A.D.1
-
34
-
-
10344264957
-
Exploring peptide energy landscapes: A test of force fields and implicit solvent models
-
Steinbach, P. J. 2004. Exploring peptide energy landscapes: a test of force fields and implicit solvent models. Proteins. 57:665-677.
-
(2004)
Proteins
, vol.57
, pp. 665-677
-
-
Steinbach, P.J.1
-
35
-
-
23044465669
-
Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: Calculation of structural and dynamic properties
-
Li, X. F., S. A. Hassan, and E. L. Mehler. 2005. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties. Proteins. 60:464-484.
-
(2005)
Proteins
, vol.60
, pp. 464-484
-
-
Li, X.F.1
Hassan, S.A.2
Mehler, E.L.3
-
36
-
-
33645786604
-
Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme
-
Buck, M., S. Bouguet-Bonnet, A. D. MacKerell, Jr. 2006. Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys. J. 90: L36-L38.
-
(2006)
Biophys. J.
, vol.90
-
-
Buck, M.1
Bouguet-Bonnet, S.2
MacKerell Jr., A.D.3
-
37
-
-
33748518255
-
Comparison of multiple Amber force fields and development of improved protein backbone parameters
-
Hornak, V., R. Abel, C. Simmerling. 2006. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 65:712-725.
-
(2006)
Proteins
, vol.65
, pp. 712-725
-
-
Hornak, V.1
Abel, R.2
Simmerling, C.3
-
38
-
-
0029878720
-
VMD: Visual molecular dynamics
-
Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33-38, 27-28.
-
(1996)
J. Mol. Graph
, vol.14
, Issue.33-38
, pp. 27-28
-
-
Humphrey, W.1
Dalke, A.2
Schulten, K.3
-
40
-
-
0342929614
-
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
-
Torrie, G. M., and J. P. Valleau. 1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23:187-199.
-
(1977)
J. Comput. Phys.
, vol.23
, pp. 187-199
-
-
Torrie, G.M.1
Valleau, J.P.2
-
41
-
-
84986519238
-
The weighted histogram analysis method for free-energy calculations on biomolecules I. The method
-
Kumar, S., D. Bouzida, J. M. Rosenberg. 1992. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13:1011-1021.
-
(1992)
J. Comput. Chem.
, vol.13
, pp. 1011-1021
-
-
Kumar, S.1
Bouzida, D.2
Rosenberg, J.M.3
-
42
-
-
0037380854
-
Gramicidin A channel as a test ground for molecular dynamics force fields
-
Allen, T. W., T. Baştuǧ, S. H. Chung. 2003. Gramicidin A channel as a test ground for molecular dynamics force fields. Biophys. J. 84:2159-2168.
-
(2003)
Biophys. J.
, vol.84
, pp. 2159-2168
-
-
Allen, T.W.1
Baştuǧ, T.2
Chung, S.H.3
-
43
-
-
33744944511
-
Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations
-
Baştuǧ, T., and S. Kuyucak. 2006. Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations. Biophys. J. 90:3941-3950.
-
(2006)
Biophys. J.
, vol.90
, pp. 3941-3950
-
-
Baştuǧ, T.1
Kuyucak, S.2
-
44
-
-
33947312827
-
Free energy simulations of single and double ion occupancy in gramicidin A
-
Baştuǧ, T., and S. Kuyucak. 2007. Free energy simulations of single and double ion occupancy in gramicidin A. J. Chem. Phys. 126:105103.
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 105103
-
-
Baştuǧ, T.1
Kuyucak, S.2
-
45
-
-
33646192258
-
Ion permeation through a narrow channel: Using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields
-
Allen, T. W., O. S. Andersen, and B. Roux. 2006. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. Biophys. J. 90:3447-3468.
-
(2006)
Biophys. J.
, vol.90
, pp. 3447-3468
-
-
Allen, T.W.1
Andersen, O.S.2
Roux, B.3
-
46
-
-
0020148876
-
+-selective channel of sarcoplasmic reticulum
-
+-selective channel of sarcoplasmic reticulum. Biophys. J. 38:227-230.
-
(1982)
Biophys. J.
, vol.38
, pp. 227-230
-
-
Miller, C.1
-
47
-
-
0024535265
-
+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes
-
+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes. Biophys. J. 55:367-371.
-
(1989)
Biophys. J.
, vol.55
, pp. 367-371
-
-
Alcayaga, C.1
Cecchi, X.2
Latorre, R.3
-
48
-
-
27644494242
-
+-water flux through the HERG potassium channel measured by an osmotic pulse method
-
+-water flux through the HERG potassium channel measured by an osmotic pulse method. J. Gen. Physiol. 126:529-538.
-
(2005)
J. Gen. Physiol.
, vol.126
, pp. 529-538
-
-
Ando, H.1
Kuno, M.2
Oiki, S.3
-
49
-
-
67650770611
-
Importance of water polarization for ion permeation in narrow pores
-
Bucher, D., and S. Kuyucak. 2009. Importance of water polarization for ion permeation in narrow pores. Chem. Phys. Lett. 477:207-210.
-
(2009)
Chem. Phys. Lett.
, vol.477
, pp. 207-210
-
-
Bucher, D.1
Kuyucak, S.2
-
50
-
-
70349616543
-
Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields
-
Patel, S., J. E. Davis, and B. A. Bauer. 2009. Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. J. Am. Chem. Soc. 131:13890-13891.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 13890-13891
-
-
Patel, S.1
Davis, J.E.2
Bauer, B.A.3
-
51
-
-
0026045545
-
+ channel behaves like an open-channel blocker
-
+ channel behaves like an open-channel blocker. Neuron. 7:743-753.
-
(1991)
Neuron
, vol.7
, pp. 743-753
-
-
Demo, S.D.1
Yellen, G.2
|