-
1
-
-
0000763454
-
A decomposition for the likelihood ratio statistic and the Bartlett correction-A Bayesian argument
-
Bickel, P. and Ghosh, J. K. (1990). "A decomposition for the likelihood ratio statistic and the Bartlett correction-A Bayesian argument." Ann. Statist., 18: 1070-1090.
-
(1990)
Ann. Statist.
, vol.18
, pp. 1070-1090
-
-
Bickel, P.1
Ghosh, J.K.2
-
6
-
-
6344219952
-
Testing option pricing with the Edgeworth expansion
-
Filho, R. G. B. and Rosenfeld, R. (2004). "Testing option pricing with the Edgeworth expansion." Physica A, 344: 484-490.
-
(2004)
Physica A
, vol.344
, pp. 484-490
-
-
Filho, R.G.B.1
Rosenfeld, R.2
-
7
-
-
0010822636
-
Expansions for posterior probability and integrated Bayes risk
-
Gupta, S. and Berger, J. (eds.). New York: Acamedic
-
Ghosh, J. K., Sinha, B., and Joshi, S. (1982). "Expansions for posterior probability and integrated Bayes risk." In Gupta, S. and Berger, J. (eds.), Statistical Decision Theory and Related Topics III, volume 1, 403-456. New York: Acamedic.
-
(1982)
Statistical Decision Theory and Related Topics III
, vol.1
, pp. 403-456
-
-
Ghosh, J.K.1
Sinha, B.2
Joshi, S.3
-
9
-
-
0041857888
-
Edgeworth expansion for U-statistics under minimal conditions
-
Jing, B.-Y. and Wang, Q. (2003). "Edgeworth expansion for U-statistics under minimal conditions." Ann. Statist., 31(4): 1376-1391.
-
(2003)
Ann. Statist.
, vol.31
, Issue.4
, pp. 1376-1391
-
-
Jing, B.-Y.1
Wang, Q.2
-
10
-
-
0001371882
-
An asymptotic expansion for posterior distributions
-
Johnson, R. (1967). "An asymptotic expansion for posterior distributions." Ann. Math. Statist., 38: 1899-1906.
-
(1967)
Ann. Math. Statist.
, vol.38
, pp. 1899-1906
-
-
Johnson, R.1
-
11
-
-
0001153759
-
Asymptotic expansions associated with posterior distributions
-
Johnson, R. (1970). "Asymptotic expansions associated with posterior distributions." Ann. Math. Statist., 41: 851-864.
-
(1970)
Ann. Math. Statist.
, vol.41
, pp. 851-864
-
-
Johnson, R.1
-
12
-
-
0037580073
-
The use of prior probability distributions in statistical inference and decisions
-
Lindley, D. V. (1961). "The use of prior probability distributions in statistical inference and decisions." Proc. 4th. Berkeley Symp., 1: 453-468.
-
(1961)
Proc. 4th. Berkeley Symp.
, vol.1
, pp. 453-468
-
-
Lindley, D.V.1
-
13
-
-
0001564538
-
Approximate Bayesian methods
-
Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and (Eds.), A. F. M. S. (eds.), University Press
-
Lindley, D. V. (1980). "Approximate Bayesian methods." In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and (Eds.), A. F. M. S. (eds.), Bayesian Statistics. University Press.
-
(1980)
Bayesian Statistics
-
-
Lindley, D.V.1
-
15
-
-
0342304694
-
Comment on Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird and D. B. Rubin
-
Murray, G. D. (1977). "Comment on "Maximum likelihood from incomplete data via the EM algorithm" by A. P. Dempster, N. M. Laird and D. B. Rubin." Journal of the Royal Statistical Society, Ser. B, 39: 27-28.
-
(1977)
Journal of the Royal Statistical Society, Ser. B
, vol.39
, pp. 27-28
-
-
Murray, G.D.1
-
16
-
-
70149113077
-
-
R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
-
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
-
(2009)
R: A Language and Environment for Statistical Computing
-
-
-
17
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
Stein, C. (1981). "Estimation of the mean of a multivariate normal distribution." Ann. Statist., 9: 1135-1151.
-
(1981)
Ann. Statist.
, vol.9
, pp. 1135-1151
-
-
Stein, C.1
-
21
-
-
0001140504
-
Asymptotic approximations to distributions
-
Wallace, D. L. (1958). "Asymptotic approximations to distributions." Annals of Mathematical Statistics, 29: 635-654.
-
(1958)
Annals of Mathematical Statistics
, vol.29
, pp. 635-654
-
-
Wallace, D.L.1
-
23
-
-
0038720631
-
On Stein's Identity for posterior normality
-
Weng, R. C. (2003). "On Stein's Identity for posterior normality." Statistica Sinica, 13: 495-506.
-
(2003)
Statistica Sinica
, vol.13
, pp. 495-506
-
-
Weng, R.C.1
-
26
-
-
0034396923
-
Integrable expansions for posterior distributions for multiparameter exponential families with applications to sequential confidence levels
-
Weng, R. C. and Woodroofe, M. (2000). "Integrable expansions for posterior distributions for multiparameter exponential families with applications to sequential confidence levels." Statistica Sinica, 10: 693-713.
-
(2000)
Statistica Sinica
, vol.10
, pp. 693-713
-
-
Weng, R.C.1
Woodroofe, M.2
-
27
-
-
0001608943
-
Very weak expansions for sequentially designed experiments: linear models
-
Woodroofe, M. (1989). "Very weak expansions for sequentially designed experiments: linear models." The Annals of Statistics, 17: 1087-1102.
-
(1989)
The Annals of Statistics
, vol.17
, pp. 1087-1102
-
-
Woodroofe, M.1
-
28
-
-
0002647228
-
Integrable expansions for posterior distributions for one-parameter exponential families
-
Woodroofe, M. (1992). "Integrable expansions for posterior distributions for one-parameter exponential families." Statistica Sinica, 2: 91-111.
-
(1992)
Statistica Sinica
, vol.2
, pp. 91-111
-
-
Woodroofe, M.1
-
29
-
-
0642310184
-
Corrected confidence sets for sequentially designed experiments
-
Woodroofe, M. and Coad, D. S. (1997). "Corrected confidence sets for sequentially designed experiments." Statistica Sinica, 7: 53-74.
-
(1997)
Statistica Sinica
, vol.7
, pp. 53-74
-
-
Woodroofe, M.1
Coad, D.S.2
|