-
2
-
-
79952490372
-
Optimal portfolios with Haezendonck risk measures
-
Bellini F., Rosazza Gianin E. Optimal portfolios with Haezendonck risk measures. Statistics & Decisions 2008, 26:89-108.
-
(2008)
Statistics & Decisions
, vol.26
, pp. 89-108
-
-
Bellini, F.1
Rosazza Gianin, E.2
-
3
-
-
56549128081
-
Characterization of comonotonicity using convex order
-
Cheung K.C. Characterization of comonotonicity using convex order. Insurance: Mathematics & Economics 2008, 43:403-406.
-
(2008)
Insurance: Mathematics & Economics
, vol.43
, pp. 403-406
-
-
Cheung, K.C.1
-
5
-
-
77955655106
-
Characterizing a comonotonic random vector by the distribution of the sum of its components
-
Cheung K.C. Characterizing a comonotonic random vector by the distribution of the sum of its components. Insurance: Mathematics & Economics 2010, 47:130-136.
-
(2010)
Insurance: Mathematics & Economics
, vol.47
, pp. 130-136
-
-
Cheung, K.C.1
-
6
-
-
84875930717
-
-
Bounds for sums of random variables when the marginal distributions and the variance of the sum are given. Scandinavian Actuarial Journal, forthcoming. doi:10.1080/03461238.2011.558186
-
Cheung, K.C., Vanduffel, S., 2011. Bounds for sums of random variables when the marginal distributions and the variance of the sum are given. Scandinavian Actuarial Journal, forthcoming. doi:10.1080/03461238.2011.558186.
-
(2011)
-
-
Cheung, K.C.1
Vanduffel, S.2
-
7
-
-
77955658077
-
An overview of comonotonicity and its applications in finance and insurance
-
Springer, G. Di Nunno, B. Ǿksendal (Eds.)
-
Deelstra G., Dhaene J., Vanmaele M. An overview of comonotonicity and its applications in finance and insurance. Advanced Mathematical Methods for Finance 2011, Springer. G. Di Nunno, B. Ǿksendal (Eds.).
-
(2011)
Advanced Mathematical Methods for Finance
-
-
Deelstra, G.1
Dhaene, J.2
Vanmaele, M.3
-
8
-
-
84889480434
-
-
Wiley
-
Denuit M., Dhaene J., Goovaerts M., Kaas R. Actuarial Theory for Dependent Risks: Measures, Orders and Models 2005, Wiley.
-
(2005)
Actuarial Theory for Dependent Risks: Measures, Orders and Models
-
-
Denuit, M.1
Dhaene, J.2
Goovaerts, M.3
Kaas, R.4
-
9
-
-
0037143978
-
The concept of comonotonicity in actuarial science and finance: theory
-
Dhaene J., Denuit M., Goovaerts M.J., Kaas R., Vyncke D. The concept of comonotonicity in actuarial science and finance: theory. Insurance: Mathematics & Economics 2002, 31:3-33.
-
(2002)
Insurance: Mathematics & Economics
, vol.31
, pp. 3-33
-
-
Dhaene, J.1
Denuit, M.2
Goovaerts, M.J.3
Kaas, R.4
Vyncke, D.5
-
10
-
-
0037131235
-
The concept of comonotonicity in actuarial science and finance: applications
-
Dhaene J., Denuit M., Goovaerts M.J., Kaas R., Vyncke D. The concept of comonotonicity in actuarial science and finance: applications. Insurance: Mathematics & Economics 2002, 31:133-161.
-
(2002)
Insurance: Mathematics & Economics
, vol.31
, pp. 133-161
-
-
Dhaene, J.1
Denuit, M.2
Goovaerts, M.J.3
Kaas, R.4
Vyncke, D.5
-
11
-
-
33748644698
-
Risk measures and comonotonicity: a review
-
Dhaene J., Vanduffel S., Goovaerts M.J., Kaas R., Tang Q., Vyncke D. Risk measures and comonotonicity: a review. Stochastic Models 2006, 22:573-606.
-
(2006)
Stochastic Models
, vol.22
, pp. 573-606
-
-
Dhaene, J.1
Vanduffel, S.2
Goovaerts, M.J.3
Kaas, R.4
Tang, Q.5
Vyncke, D.6
-
12
-
-
77955655390
-
Upper comonotonicity and convex upper bounds for sums of random variables
-
Dong J., Cheung K.C., Yang H. Upper comonotonicity and convex upper bounds for sums of random variables. Insurance: Mathematics & Economics 2010, 47:159-166.
-
(2010)
Insurance: Mathematics & Economics
, vol.47
, pp. 159-166
-
-
Dong, J.1
Cheung, K.C.2
Yang, H.3
-
13
-
-
2642575678
-
Some new classes of consistent risk measures
-
Goovaerts M.J., Kaas R., Dhaene J., Tang Q. Some new classes of consistent risk measures. Insurance: Mathematics & Economics 2004, 34:505-516.
-
(2004)
Insurance: Mathematics & Economics
, vol.34
, pp. 505-516
-
-
Goovaerts, M.J.1
Kaas, R.2
Dhaene, J.3
Tang, Q.4
-
15
-
-
0242311929
-
A simple geometric proof that comonotonic risks have the convex-largest sum
-
Kaas R., Dhaene J., Vyncke D., Goovaerts M.J., Denuit M. A simple geometric proof that comonotonic risks have the convex-largest sum. Astin Bulletin 2002, 32:71-80.
-
(2002)
Astin Bulletin
, vol.32
, pp. 71-80
-
-
Kaas, R.1
Dhaene, J.2
Vyncke, D.3
Goovaerts, M.J.4
Denuit, M.5
-
16
-
-
78649594195
-
A new proof of Cheung's characterization of comonotonicity
-
Mao T., Hu T. A new proof of Cheung's characterization of comonotonicity. Insurance: Mathematics & Economics 2011, 48:214-216.
-
(2011)
Insurance: Mathematics & Economics
, vol.48
, pp. 214-216
-
-
Mao, T.1
Hu, T.2
|