메뉴 건너뛰기




Volumn 48, Issue 3, 2011, Pages 368-373

Characterization of upper comonotonicity via tail convex order

Author keywords

Comonotonicity; Haezendonck risk measures; Tail convex order; Upper comonotonicity

Indexed keywords


EID: 79551637630     PISSN: 01676687     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.insmatheco.2011.01.003     Document Type: Article
Times cited : (18)

References (16)
  • 2
    • 79952490372 scopus 로고    scopus 로고
    • Optimal portfolios with Haezendonck risk measures
    • Bellini F., Rosazza Gianin E. Optimal portfolios with Haezendonck risk measures. Statistics & Decisions 2008, 26:89-108.
    • (2008) Statistics & Decisions , vol.26 , pp. 89-108
    • Bellini, F.1    Rosazza Gianin, E.2
  • 3
    • 56549128081 scopus 로고    scopus 로고
    • Characterization of comonotonicity using convex order
    • Cheung K.C. Characterization of comonotonicity using convex order. Insurance: Mathematics & Economics 2008, 43:403-406.
    • (2008) Insurance: Mathematics & Economics , vol.43 , pp. 403-406
    • Cheung, K.C.1
  • 5
    • 77955655106 scopus 로고    scopus 로고
    • Characterizing a comonotonic random vector by the distribution of the sum of its components
    • Cheung K.C. Characterizing a comonotonic random vector by the distribution of the sum of its components. Insurance: Mathematics & Economics 2010, 47:130-136.
    • (2010) Insurance: Mathematics & Economics , vol.47 , pp. 130-136
    • Cheung, K.C.1
  • 6
    • 84875930717 scopus 로고    scopus 로고
    • Bounds for sums of random variables when the marginal distributions and the variance of the sum are given. Scandinavian Actuarial Journal, forthcoming. doi:10.1080/03461238.2011.558186
    • Cheung, K.C., Vanduffel, S., 2011. Bounds for sums of random variables when the marginal distributions and the variance of the sum are given. Scandinavian Actuarial Journal, forthcoming. doi:10.1080/03461238.2011.558186.
    • (2011)
    • Cheung, K.C.1    Vanduffel, S.2
  • 7
    • 77955658077 scopus 로고    scopus 로고
    • An overview of comonotonicity and its applications in finance and insurance
    • Springer, G. Di Nunno, B. Ǿksendal (Eds.)
    • Deelstra G., Dhaene J., Vanmaele M. An overview of comonotonicity and its applications in finance and insurance. Advanced Mathematical Methods for Finance 2011, Springer. G. Di Nunno, B. Ǿksendal (Eds.).
    • (2011) Advanced Mathematical Methods for Finance
    • Deelstra, G.1    Dhaene, J.2    Vanmaele, M.3
  • 12
    • 77955655390 scopus 로고    scopus 로고
    • Upper comonotonicity and convex upper bounds for sums of random variables
    • Dong J., Cheung K.C., Yang H. Upper comonotonicity and convex upper bounds for sums of random variables. Insurance: Mathematics & Economics 2010, 47:159-166.
    • (2010) Insurance: Mathematics & Economics , vol.47 , pp. 159-166
    • Dong, J.1    Cheung, K.C.2    Yang, H.3
  • 15
    • 0242311929 scopus 로고    scopus 로고
    • A simple geometric proof that comonotonic risks have the convex-largest sum
    • Kaas R., Dhaene J., Vyncke D., Goovaerts M.J., Denuit M. A simple geometric proof that comonotonic risks have the convex-largest sum. Astin Bulletin 2002, 32:71-80.
    • (2002) Astin Bulletin , vol.32 , pp. 71-80
    • Kaas, R.1    Dhaene, J.2    Vyncke, D.3    Goovaerts, M.J.4    Denuit, M.5
  • 16
    • 78649594195 scopus 로고    scopus 로고
    • A new proof of Cheung's characterization of comonotonicity
    • Mao T., Hu T. A new proof of Cheung's characterization of comonotonicity. Insurance: Mathematics & Economics 2011, 48:214-216.
    • (2011) Insurance: Mathematics & Economics , vol.48 , pp. 214-216
    • Mao, T.1    Hu, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.