메뉴 건너뛰기




Volumn 39, Issue 1, 2011, Pages 174-200

Focused information criterion and model averaging for generalized additive partial linear models

Author keywords

Additive models; Backfitting; Focus parameter; Generalized partially linear models; Marginal integration; Model average; Model selection; Polynomial spline; Shrinkage methods

Indexed keywords


EID: 79551608669     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-AOS832     Document Type: Article
Times cited : (130)

References (47)
  • 1
    • 77952851999 scopus 로고
    • Maximum likelihood identification of Gaussian autoregressive moving average models
    • MR0326953
    • AKAIKE, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 22 203-217. MR0326953
    • (1973) Biometrika , vol.22 , pp. 203-217
    • Akaike, H.1
  • 2
    • 0014629731 scopus 로고
    • The combination of forecasts
    • MR0295497
    • BATES, J. M. andGRANGER, C. M. J. (1969). The combination of forecasts. Operations Res. Quart. 20 451-468. MR0295497
    • (1969) Operations Res. Quart. , vol.20 , pp. 451-468
    • Bates, J.M.1    Granger, C.M.J.2
  • 3
    • 0030613470 scopus 로고    scopus 로고
    • Model selection: An integral part of inference
    • BUCKLAND, S. T., BURNHAM, K. P. and AUGUSTIN, N. H. (1997). Model selection: An integral part of inference. Biometrics 53 603-618.
    • (1997) Biometrics , vol.53 , pp. 603-618
    • Buckland, S.T.1    Burnham, K.P.2    Augustin, N.H.3
  • 4
    • 0000014224 scopus 로고
    • Linear smoothers and additive models (with discussion
    • MR0994249
    • BUJA, A., HASTIE, T. and TIBSHIRANI, R. (1989). Linear smoothers and additive models (with discussion). Ann. Statist. 17 453-555. MR0994249
    • (1989) Ann. Statist. , vol.17 , pp. 453-555
    • Buja, A.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 34548446777 scopus 로고    scopus 로고
    • An asymptotic theory for model selection inference in general semiparametric problems
    • MR2331485
    • CLAESKENS, G. and CARROLL, R. J. (2007). An asymptotic theory for model selection inference in general semiparametric problems. Biometrika 94 249-265. MR2331485
    • (2007) Biometrika , vol.94 , pp. 249-265
    • Claeskens, G.1    Carroll, R.J.2
  • 8
    • 33845481812 scopus 로고    scopus 로고
    • Variable selection for logistic regression using a prediction-focused information criterion
    • MR2297667
    • CLAESKENS, G., CROUX, C. and VAN KERCKHOVEN, J. (2006). Variable selection for logistic regression using a prediction-focused information criterion. Biometrics 62 972-979. MR2297667
    • (2006) Biometrics , vol.62 , pp. 972-979
    • Claeskens, G.1    Croux, C.2    Van Kerckhoven, J.3
  • 9
    • 37249020319 scopus 로고    scopus 로고
    • Prediction-focused model selection for autoregressive models
    • MR2413576
    • CLAESKENS, G., CROUX, C. and VAN KERCKHOVEN, J. (2007). Prediction-focused model selection for autoregressive models. Aus. J. Statist. 49 359-379. MR2413576
    • (2007) Aus. J. Statist. , vol.49 , pp. 359-379
    • Claeskens, G.1    Croux, C.2    Van Kerckhoven, J.3
  • 10
    • 1142265325 scopus 로고    scopus 로고
    • The focused information criterion (with discussion)
    • MR2041482
    • CLAESKENS, G. and HJORT, N. L. (2003). The focused information criterion (with discussion). J. Amer. Statist. Assoc. 98 900-916. MR2041482
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 900-916
    • Claeskens, G.1    Hjort, N.L.2
  • 12
    • 3042730371 scopus 로고    scopus 로고
    • On the harm that ignoring pretesting can cause
    • MR2082531
    • DANILOV, D. andMAGNUS, J. R. (2004). On the harm that ignoring pretesting can cause. J. Econometrics 122 27-46. MR2082531
    • (2004) J. Econometrics , vol.122 , pp. 27-46
    • Danilov, D.1    Magnus, J.R.2
  • 14
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • MR1325378
    • DRAPER, D. (1995). Assessment and propagation of model uncertainty. J. R. Stat. Soc. Ser. B 57 45-70. MR1325378
    • (1995) J. R. Stat. Soc. Ser. B , vol.57 , pp. 45-70
    • Draper, D.1
  • 16
    • 0037598692 scopus 로고    scopus 로고
    • Local versus global models for classification problems: Fitting models where it matters
    • MR1977118
    • HAND, D. J. and VINCIOTTI, V. (2003). Local versus global models for classification problems: Fitting models where it matters. Amer. Statist. 57 124-131. MR1977118
    • (2003) Amer. Statist. , vol.57 , pp. 124-131
    • Hand, D.J.1    Vinciotti, V.2
  • 17
    • 15744403698 scopus 로고    scopus 로고
    • Challenges for econometric model selection
    • MR2161958
    • HANSEN, B. E. (2005). Challenges for econometric model selection. Econ. Theory 21 60-68. MR2161958
    • (2005) Econ. Theory , vol.21 , pp. 60-68
    • Hansen, B.E.1
  • 19
    • 18244426769 scopus 로고    scopus 로고
    • Bootstrap inference in semiparametric generalized additive models
    • MR2044272
    • HÄRDLE, W., HUET, S., MAMMEN, E. and SPERLICH, S. (2004a). Bootstrap inference in semiparametric generalized additive models. Econom. Theory 20 265-300. MR2044272
    • (2004) Econom. Theory , vol.20 , pp. 265-300
    • Härdle, W.1    Huet, S.2    Mammen, E.3    Sperlich, S.4
  • 21
    • 1142277415 scopus 로고    scopus 로고
    • Frequentist model average estimators (with discussion)
    • MR2041481
    • HJORT, N. L. and CLAESKENS, G. (2003). Frequentist model average estimators (with discussion). J. Amer. Statist. Assoc. 98 879-945. MR2041481
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 879-945
    • Hjort, N.L.1    Claeskens, G.2
  • 22
    • 33846098896 scopus 로고    scopus 로고
    • Focussed information criteria and model averaging for Cox's hazard regression model
    • MR2279471
    • HJORT, N. L. and CLAESKENS, G. (2006). Focussed information criteria and model averaging for Cox's hazard regression model. J. Amer. Statist. Assoc. 101 1449-1464. MR2279471
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1449-1464
    • Hjort, N.L.1    Claeskens, G.2
  • 23
    • 0011114772 scopus 로고    scopus 로고
    • Functional ANOVA models for generalized regression
    • MR1659096
    • HUANG, J. (1998). Functional ANOVA models for generalized regression. J. Multivariate Anal. 67 49-71. MR1659096
    • (1998) J. Multivariate Anal. , vol.67 , pp. 49-71
    • Huang, J.1
  • 24
    • 0033233734 scopus 로고    scopus 로고
    • Efficient estimation of the partly linear additive Cox model
    • MR1742499
    • HUANG, J. (1999). Efficient estimation of the partly linear additive Cox model. Ann. Statist. 27 1536-1563. MR1742499
    • (1999) Ann. Statist. , vol.27 , pp. 1536-1563
    • Huang, J.1
  • 25
    • 21844490169 scopus 로고
    • Semiparametric regression in likelihood-based models
    • MR1310226
    • HUNSBERGER, S. (1994). Semiparametric regression in likelihood-based models. J. Amer. Statist. Assoc. 89 1354-1365. MR1310226
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1354-1365
    • Hunsberger, S.1
  • 26
    • 27644481071 scopus 로고    scopus 로고
    • Parametric and semiparametric approaches to testing for seasonal trend in serial count data
    • HUNSBERGER, S., ALBERT, P., FOLLMANN, D. and SUH, E. (2002). Parametric and semiparametric approaches to testing for seasonal trend in serial count data. Biostatistics 3 289-298.
    • (2002) Biostatistics , vol.3 , pp. 289-298
    • Hunsberger, S.1    Albert, P.2    Follmann, D.3    Suh, E.4
  • 27
    • 1542678344 scopus 로고    scopus 로고
    • James-Stein-type estimators in large samples with application to the least absolute deviations estimator
    • MR1946435
    • KIM, T. H. andWHITE, H. (2001). James-Stein-type estimators in large samples with application to the least absolute deviations estimator. J. Amer. Statist. Assoc. 96 697-705. MR1946435
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 697-705
    • Kim, T.H.1    White, H.2
  • 28
    • 33847415033 scopus 로고    scopus 로고
    • Can one estimate the conditional distribution of postmodel- selection estimators?
    • MR2291510
    • LEEB, H. and PÖTSCHER, B. M. (2006). Can one estimate the conditional distribution of postmodel- selection estimators? Ann. Statist. 34 2554-2591. MR2291510
    • (2006) Ann. Statist. , vol.34 , pp. 2554-2591
    • Leeb, H.1    Pötscher, B.M.2
  • 29
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • MR2242356
    • LEUNG, G. and BARRON, A. R. (2006). Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory 52 3396-3410. MR2242356
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 3396-3410
    • Leung, G.1    Barron, A.R.2
  • 30
    • 40749158174 scopus 로고    scopus 로고
    • Generalized partially linear models with missing covariates
    • MR2405096
    • LIANG, H. (2008). Generalized partially linear models with missing covariates. J. Multivariate Anal. 99 880-895. MR2405096
    • (2008) J. Multivariate Anal. , vol.99 , pp. 880-895
    • Liang, H.1
  • 32
    • 0442312205 scopus 로고    scopus 로고
    • Semiparametric regression for clustered data using generalized estimating equations
    • MR1947252
    • LIN, X. H. and CARROLL, R. J. (2001). Semiparametric regression for clustered data using generalized estimating equations. J. Amer. Statist. Assoc. 96 1045-1056. MR1947252
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1045-1056
    • Lin, X.H.1    Carroll, R.J.2
  • 33
    • 77956888636 scopus 로고
    • A kernel method of estimating structured nonparametric regression based on marginal integration
    • MR1332841
    • LINTON, O. B. and NIELSEN, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 93-101. MR1332841
    • (1995) Biometrika , vol.82 , pp. 93-101
    • Linton, O.B.1    Nielsen, J.P.2
  • 35
    • 84971936861 scopus 로고
    • Asymptotics for least absolute deviation regression estimators
    • MR1128411
    • POLLARD, D. (1991). Asymptotics for least absolute deviation regression estimators. Econom. Theory 7 186-199. MR1128411
    • (1991) Econom. Theory , vol.7 , pp. 186-199
    • Pollard, D.1
  • 36
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • MR0468014
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. MR0468014
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 37
    • 84950442031 scopus 로고
    • Quasi-likelihood estimation in semiparametric models
    • MR1294076
    • SEVERINI, T. A. and STANISWALIS, J. G. (1994). Quasi-likelihood estimation in semiparametric models. J. Amer. Statist. Assoc. 89 501-511. MR1294076
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 501-511
    • Severini, T.A.1    Staniswalis, J.G.2
  • 38
    • 4944259966 scopus 로고    scopus 로고
    • Inference after model selection
    • MR2090908
    • SHEN, X., HUANG, H. C. andYE, J. (2004). Inference after model selection. J. Amer. Statist. Assoc. 99 751-762. MR2090908
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 751-762
    • Shen, X.1    Huang, H.C.2    Ye, J.3
  • 39
    • 0031638056 scopus 로고    scopus 로고
    • Generalized additive models for current status data
    • SHIBOSKI, C. S. (1998). Generalized additive models for current status data. Lifetime Data Anal. 4 29-50.
    • (1998) Lifetime Data Anal. , vol.4 , pp. 29-50
    • Shiboski, C.S.1
  • 40
    • 0001719983 scopus 로고
    • The dimensionality reduction principle for generalized additive models
    • MR0840516
    • STONE, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590-606. MR0840516
    • (1986) Ann. Statist. , vol.14 , pp. 590-606
    • Stone, C.J.1
  • 41
    • 0346862811 scopus 로고
    • The use of polynomial spline and their tensor products in multivariate function estimation (with discussion
    • MR1272079
    • STONE, C. J. (1994). The use of polynomial spline and their tensor products in multivariate function estimation (with discussion). Ann. Statist. 22 118-184. MR1272079
    • (1994) Ann. Statist. , vol.22 , pp. 118-184
    • Stone, C.J.1
  • 42
    • 0031484203 scopus 로고    scopus 로고
    • Polynomial splines and their tensor products in extended linear modeling (with discussion)
    • MR1463561
    • STONE, C. J., HANSEN, M. H., KOOPERBERG, C. and TRUONG, Y. K. (1997). Polynomial splines and their tensor products in extended linear modeling (with discussion). Ann. Statist. 25 1371-1470. MR1463561
    • (1997) Ann. Statist. , vol.25 , pp. 1371-1470
    • Stone, C.J.1    Hansen, M.H.2    Kooperberg, C.3    Truong, Y.K.4
  • 43
    • 49649089908 scopus 로고    scopus 로고
    • Polynomial spline estimation of partially linear single-index proportional hazards regression models
    • MR2528601
    • SUN, J., KOPCIUK, A. K. and LU, X. (2008). Polynomial spline estimation of partially linear single-index proportional hazards regression models. Comput. Statist. Data Anal. 53 176-188. MR2528601
    • (2008) Comput. Statist. Data Anal. , vol.53 , pp. 176-188
    • Sun, J.1    Kopciuk, A.K.2    Lu, X.3
  • 45
    • 33846559323 scopus 로고    scopus 로고
    • Additive coefficient modeling via polynomial spline
    • MR2327498
    • XUE, L. and YANG, L. (2006). Additive coefficient modeling via polynomial spline. Statist. Sinica 16 1423-1446. MR2327498
    • (2006) Statist. Sinica , vol.16 , pp. 1423-1446
    • Xue, L.1    Yang, L.2
  • 46
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive regression by mixing
    • MR1946426
    • YANG, Y. (2001). Adaptive regression by mixing. J. Amer. Statist. Assoc. 96 574-586. MR1946426
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 574-586
    • Yang, Y.1
  • 47
    • 50649094291 scopus 로고    scopus 로고
    • Smooth backfitting in generalized additive models
    • MR2387970
    • YU, K., PARK, B. U. andMAMMEN, E. (2008). Smooth backfitting in generalized additive models. Ann. Statist. 36 228-260. MR2387970
    • (2008) Ann. Statist. , vol.36 , pp. 228-260
    • Yu, K.1    Park, B.U.2    Mammen, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.