메뉴 건너뛰기




Volumn , Issue , 2010, Pages 17-24

Towards dynamic self-tuning for intrusion detection systems

Author keywords

Anomaly detection; Concept drift; Intrusion detection; Network security

Indexed keywords

ALARM GENERATION; ANOMALY DETECTION; ANOMALY-BASED INTRUSION DETECTION; BLACK BOX SOLUTION; CONCEPT DRIFT; DETECTION STAGE; FALSE POSITIVE RATES; FINANCIAL MARKET; INCOMING PACKETS; INTRUSION DETECTION SCHEME; INTRUSION DETECTION SYSTEMS; RAPID PROCESSING; RE-TUNING; SELF-TUNING MECHANISMS; SELFTUNING; STATISTICAL ANALYSIS; TECHNICAL ANALYSIS;

EID: 79551562582     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PCCC.2010.5682339     Document Type: Conference Paper
Times cited : (2)

References (15)
  • 1
    • 37249008138 scopus 로고    scopus 로고
    • Insertion, evasion, and denial of service: Eluding network intrusion detection
    • Inc.
    • T. Ptacek and T. Newsham, "Insertion, evasion, and denial of service: Eluding network intrusion detection," in Secure Networks, Inc. 1998.
    • (1998) Secure Networks
    • Ptacek, T.1    Newsham, T.2
  • 5
    • 34248377875 scopus 로고    scopus 로고
    • Svision: A novel visual network-anomaly identification technique
    • May
    • I. Onuta and A. Ghorbani, "Svision: A novel visual network-anomaly identification technique," Computer Security, May 2007.
    • (2007) Computer Security
    • Onuta, I.1    Ghorbani, A.2
  • 6
    • 29244471799 scopus 로고    scopus 로고
    • An approach for detecting self-propagating email using anomaly detection
    • A. Gupta and R. Sekar, "An approach for detecting self-propagating email using anomaly detection," in RAID 2003.
    • RAID 2003
    • Gupta, A.1    Sekar, R.2
  • 9
    • 4143149628 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • Kluwer
    • E. Eskin, A. Arnold, M. Prerau, L. Portnor, and S. Stolfo, "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data," in Data Mining for Security App., Kluwer, 2002.
    • (2002) Data Mining for Security App.
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnor, L.4    Stolfo, S.5
  • 10
    • 0036038437 scopus 로고    scopus 로고
    • Service specific anomaly detection for network intrusion detection
    • ACM Digital Library
    • C. Kruegel, T. Toth, and E. Kirda, "Service specific anomaly detection for network intrusion detection," in Applied Computing (SAC), ACM Digital Library 2002.
    • (2002) Applied Computing (SAC)
    • Kruegel, C.1    Toth, T.2    Kirda, E.3
  • 11
    • 76649142367 scopus 로고    scopus 로고
    • Protecting a moving target: Addressing web application concept drift
    • F. Maggi, W. Robertson, C. Kruegel, and G. Vigna, "Protecting a moving target: Addressing web application concept drift," rAID 2009.
    • RAID 2009
    • Maggi, F.1    Robertson, W.2    Kruegel, C.3    Vigna, G.4
  • 12
    • 35348910615 scopus 로고    scopus 로고
    • Anagram: A content anomaly detector resistant to mimicry attack
    • K. Wang, J. J. Parekh, and S. J. Stolfo, "Anagram: A content anomaly detector resistant to mimicry attack," in RAID 2006.
    • RAID 2006
    • Wang, K.1    Parekh, J.J.2    Stolfo, S.J.3
  • 14
    • 0002510221 scopus 로고    scopus 로고
    • Approaches to online learning and concept drift for user identification in computer security
    • AAAI Press
    • T. Lane and C. E. Brodley, "Approaches to online learning and concept drift for user identification in computer security," in In KDD. AAAI Press, pp. 259-263.
    • KDD , pp. 259-263
    • Lane, T.1    Brodley, C.E.2
  • 15
    • 84874004542 scopus 로고    scopus 로고
    • Meta-learning, model selection, and example selection in machine learning domains with concept drift
    • R. Klinkenberg, "Meta-learning, model selection, and example selection in machine learning domains with concept drift," in FGML-LWA), 2005.
    • (2005) FGML-LWA)
    • Klinkenberg, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.