메뉴 건너뛰기




Volumn 21, Issue 1, 2011, Pages 212-222

Wavelet transform and multi-class relevance vector machines based recognition and classification of power quality disturbances

Author keywords

feature extraction; multi class pattern recognition; power quality disturbances; relevance vector machines (RVMs); wavelet transform

Indexed keywords

CLASSIFICATION TOOL; FEATURE VECTORS; INTEGRATED MODELS; MULTI-CLASS PATTERN RECOGNITION; MULTI-CLASS RELEVANCE VECTOR MACHINE; NOISE CONDITIONS; POWER QUALITY DISTURBANCES; POWER QUALITY EVENT; POWER SYSTEM MONITORING; RELEVANCE VECTOR MACHINE; RELEVANCE VECTOR MACHINES (RVMS); TRANSIENT EVENTS; VOLTAGE WAVEFORMS;

EID: 79551499789     PISSN: 1430144X     EISSN: 15463109     Source Type: Journal    
DOI: 10.1002/etep.432     Document Type: Article
Times cited : (34)

References (36)
  • 1
    • 45449113326 scopus 로고    scopus 로고
    • An effective wavelet-based feature extraction method for classification of power quality disturbance signals
    • DOI: 10.1016/j.epsr.2008.03.002
    • Uyara M, Yildirima S, Gencoglub MT,. An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electric Power Systems Research 2008; 78: 1747-1755. DOI: 10.1016/j.epsr.2008. 03.002
    • (2008) Electric Power Systems Research , vol.78 , pp. 1747-1755
    • Uyara, M.1    Yildirima, S.2    Gencoglub, M.T.3
  • 2
    • 7244258874 scopus 로고    scopus 로고
    • Wavelet-based neural network for power disturbance recognition and classification
    • DOI: 10.1109/TPWRD.2004.835281
    • Gaing ZL,. Wavelet-based neural network for power disturbance recognition and classification. IEEE Transaction on Power Delivery 2004; 19: 1560-1568. DOI: 10.1109/TPWRD.2004.835281
    • (2004) IEEE Transaction on Power Delivery , vol.19 , pp. 1560-1568
    • Gaing, Z.L.1
  • 4
    • 0035152204 scopus 로고    scopus 로고
    • Feasibility of fractal-based methods for visualization of power system disturbances
    • DOI: 10.1016/S0142-0615(00)00036-3
    • Huang SJ, Hsieh CT,. Feasibility of fractal-based methods for visualization of power system disturbances. Power Energy System 2004; 23: 31-36. DOI: 10.1016/S0142-0615(00)00036-3
    • (2004) Power Energy System , vol.23 , pp. 31-36
    • Huang, S.J.1    Hsieh, C.T.2
  • 5
    • 59349107715 scopus 로고    scopus 로고
    • Power quality disturbance classification utilizing S-transform and binary feature matrix method
    • DOI: 10.1016/j.epsr.2008.08.007
    • Nguyen T, Liao Y,. Power quality disturbance classification utilizing S-transform and binary feature matrix method. Electric Power Systems Research 2009; 4: 569-5757. DOI: 10.1016/j.epsr.2008.08.007
    • (2009) Electric Power Systems Research , vol.4 , pp. 569-5757
    • Nguyen, T.1    Liao, Y.2
  • 6
    • 0035792190 scopus 로고    scopus 로고
    • A classification of power quality disturbances using time-frequency ambiguity plane and neural networks
    • DOI: 10.1109/PESS.2001.970247
    • Wang M, Ochenkowski P, Mamishev A,. A classification of power quality disturbances using time-frequency ambiguity plane and neural networks. IEEE Power Engineering Society Summer Meeting 2001; 2: 1246-1251. DOI: 10.1109/PESS.2001.970247
    • (2001) IEEE Power Engineering Society Summer Meeting , vol.2 , pp. 1246-1251
    • Wang, M.1    Ochenkowski, P.2    Mamishev, A.3
  • 7
    • 0037050564 scopus 로고    scopus 로고
    • A method for detection and classification of power quality disturbances
    • Wen J, Liu P,. A method for detection and classification of power quality disturbances. Automatic Electric Power System China 2002; 26: 42-44.
    • (2002) Automatic Electric Power System China , vol.26 , pp. 42-44
    • Wen, J.1    Liu, P.2
  • 8
    • 61349148635 scopus 로고    scopus 로고
    • Hybrid signal processing and machine intelligence techniques for detection, quantification and classification of power quality disturbances
    • DOI: 10.1016/j.engappai.2008.10.003
    • Panigrahi BK, Dash PK, Redy JBV,. Hybrid signal processing and machine intelligence techniques for detection, quantification and classification of power quality disturbances. Engineering Application of Artificial Intelligence 2009; 22: 442-454. DOI: 10.1016/j.engappai.2008.10.003
    • (2009) Engineering Application of Artificial Intelligence , vol.22 , pp. 442-454
    • Panigrahi, B.K.1    Dash, P.K.2    Redy, J.B.V.3
  • 10
    • 20544458379 scopus 로고    scopus 로고
    • A Chirp-Z transform-based synchronizer for power system measurements
    • DOI: 10.1109/TIM.2005.847243
    • Aiello M, Cataliotti A, Nuccio S,. A Chirp-Z transform-based synchronizer for power system measurements. IEEE Transaction on Instrument Measurment 2005; 54: 1025-1032. DOI: 10.1109/TIM.2005.847243
    • (2005) IEEE Transaction on Instrument Measurment , vol.54 , pp. 1025-1032
    • Aiello, M.1    Cataliotti, A.2    Nuccio, S.3
  • 11
    • 41249090047 scopus 로고    scopus 로고
    • Recognition of power quality events by using multiwavelet-based neural networks
    • DOI: 10.1016/j.ijepes.2007.07.003
    • Kaewarsa S, Attakitmongcol K, Kulworawanichpong T,. Recognition of power quality events by using multiwavelet-based neural networks. Electrical Power and Energy Systems 2008; 30: 254-260. DOI: 10.1016/j.ijepes.2007.07.003
    • (2008) Electrical Power and Energy Systems , vol.30 , pp. 254-260
    • Kaewarsa, S.1    Attakitmongcol, K.2    Kulworawanichpong, T.3
  • 12
    • 0033706929 scopus 로고    scopus 로고
    • Power quality disturbance waveform recognition using wavelet-based neural classifier- part 2: Application
    • Santoso S, Powers EJ, Grady WM, Parsons AC,. Power quality disturbance waveform recognition using wavelet-based neural classifier- part 2: application. IEEE Transaction on Power Delivery 2000; 15: 229-235.
    • (2000) IEEE Transaction on Power Delivery , vol.15 , pp. 229-235
    • Santoso, S.1    Powers, E.J.2    Grady, W.M.3    Parsons, A.C.4
  • 13
    • 37749042253 scopus 로고    scopus 로고
    • Detection and classification of power quality disturbances using S-transform and probabilistic neural network
    • DOI: 10.1109/TPWRD.2007.911125
    • Mishra S, Bhende CN, Panigrahi BK,. Detection and classification of power quality disturbances using S-transform and probabilistic neural network. IEEE Transaction on Power Delivery 2008; 23: 280-287. DOI: 10.1109/TPWRD.2007.911125
    • (2008) IEEE Transaction on Power Delivery , vol.23 , pp. 280-287
    • Mishra, S.1    Bhende, C.N.2    Panigrahi, B.K.3
  • 15
    • 34249329903 scopus 로고    scopus 로고
    • Detection and classification of power quality disturbances based on wavelet packet decomposition and support vector machines
    • DOI: 10.1109/ICOSP.2006. 346074
    • Tong W, Song X, Lin J, Zhao Z,. Detection and classification of power quality disturbances based on wavelet packet decomposition and support vector machines. Signal Processing, 8th International Conference, 2006; 4. DOI: 10.1109/ICOSP.2006. 346074
    • (2006) Signal Processing, 8th International Conference , vol.4
    • Tong, W.1    Song, X.2    Lin, J.3    Zhao, Z.4
  • 17
    • 0036121852 scopus 로고    scopus 로고
    • Power disturbance classifier using a rule-based method and wavelet packet based hidden Markov model
    • DOI: 10.1109/MPER.2001.4311191
    • Chung J, Powers EJ, Grady WM, Bhatt SC,. Power disturbance classifier using a rule-based method and wavelet packet based hidden Markov model. IEEE Transaction on Power Delivery 2001; 17: 233-241. DOI: 10.1109/MPER.2001.4311191
    • (2001) IEEE Transaction on Power Delivery , vol.17 , pp. 233-241
    • Chung, J.1    Powers, E.J.2    Grady, W.M.3    Bhatt, S.C.4
  • 18
    • 0346317383 scopus 로고    scopus 로고
    • A fuzzy-expert system for classifying power quality disturbances
    • Liao Y, Lee JB,. A fuzzy-expert system for classifying power quality disturbances. Electrical Power and Energy Systems 2004; 26: 199-205.
    • (2004) Electrical Power and Energy Systems , vol.26 , pp. 199-205
    • Liao, Y.1    Lee, J.B.2
  • 19
    • 0141719482 scopus 로고    scopus 로고
    • Voltage notch detection using fuzzy expert system
    • DOI: 10.1109/CCECE. 2003.1226442
    • Andami H, Jalilian A,. Voltage notch detection using fuzzy expert system. IEEE Proceeding, Montreal, Canada, 2003; 1: 479-482. DOI: 10.1109/CCECE. 2003.1226442
    • (2003) IEEE Proceeding, Montreal, Canada , vol.1 , pp. 479-482
    • Andami, H.1    Jalilian, A.2
  • 22
    • 0033207874 scopus 로고    scopus 로고
    • Power quality detection and classification using wavelet-multiresolution signal decomposition
    • DOI: 10.1109/61.796242
    • Gaouda AM, Salama MMA, Sultan MR, Chikhani AY,. Power quality detection and classification using wavelet-multiresolution signal decomposition. IEEE Transaction on Power Delivery 1999; 14: 1469-1476. DOI: 10.1109/61.796242
    • (1999) IEEE Transaction on Power Delivery , vol.14 , pp. 1469-1476
    • Gaouda, A.M.1    Salama, M.M.A.2    Sultan, M.R.3    Chikhani, A.Y.4
  • 24
    • 0036529638 scopus 로고    scopus 로고
    • A neural-fuzzy classifier for recognition of power quality disturbances
    • DOI: 10.1109/PESW.2002.985141
    • Huang J, Negnevitsky M, Nguyen DT,. A neural-fuzzy classifier for recognition of power quality disturbances. IEEE Transaction on Power Delivery 2002; 17: 609-616. DOI: 10.1109/PESW.2002.985141
    • (2002) IEEE Transaction on Power Delivery , vol.17 , pp. 609-616
    • Huang, J.1    Negnevitsky, M.2    Nguyen, D.T.3
  • 26
    • 44949148333 scopus 로고    scopus 로고
    • Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines
    • DOI: 10.1016/j. eswa.2007.06.005
    • Hu GS, Zhu FF, Ren Z,. Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines. Expert Systems with Applications 2008; 35: 143-149. DOI: 10.1016/j. eswa.2007.06.005
    • (2008) Expert Systems with Applications , vol.35 , pp. 143-149
    • Hu, G.S.1    Zhu, F.F.2    Ren, Z.3
  • 27
    • 54049145002 scopus 로고    scopus 로고
    • Detection and classification of multiple power-quality disturbances with wavelet multiclass SVM
    • DOI: 10.1109/TPWRD.2008.923463
    • Lin WM, Wu CH, Lin CH, Chen FS,. Detection and classification of multiple power-quality disturbances with wavelet multiclass SVM. IEEE Transaction on power delivery 2008; 23: 2575-2582. DOI: 10.1109/TPWRD.2008.923463
    • (2008) IEEE Transaction on Power Delivery , vol.23 , pp. 2575-2582
    • Lin, W.M.1    Wu, C.H.2    Lin, C.H.3    Chen, F.S.4
  • 28
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • Solla S.A., Leen T.K., Muller K.R. (eds). MIT Press: Cambridge, MA
    • Tipping ME,. The relevance vector machine. in Advances in Neural Information Processing Systems, Vol. 12, Solla SA, Leen TK, Muller KR, (eds). MIT Press: Cambridge, MA, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Tipping, M.E.1
  • 31
    • 0031125962 scopus 로고    scopus 로고
    • Transient power quality problems analyzed using wavelets
    • DOI: 10.1109/61.584412
    • Heydt GT, Galli AW,. Transient power quality problems analyzed using wavelets. IEEE Transaction on power Delivery 1997; 12: 908-991. DOI: 10.1109/61.584412
    • (1997) IEEE Transaction on Power Delivery , vol.12 , pp. 908-991
    • Heydt, G.T.1    Galli, A.W.2
  • 34
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • Mackay DJC,. The evidence framework applied to classification networks. Neural Computation 1992; 4: 720-736.
    • (1992) Neural Computation , vol.4 , pp. 720-736
    • MacKay, D.J.C.1
  • 35
    • 33244459555 scopus 로고    scopus 로고
    • A self-organizing learning array system for power quality classification based on wavelet transforms
    • DOI: 10.1109/TPWRD.2005. 852392
    • He H, Starzyk JA,. A self-organizing learning array system for power quality classification based on wavelet transforms. IEEE Transaction on Power Delivery 2006; 21: 286-295. DOI: 10.1109/TPWRD.2005. 852392
    • (2006) IEEE Transaction on Power Delivery , vol.21 , pp. 286-295
    • He, H.1    Starzyk, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.