메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 3313-3332

Maximum likelihood in cost-sensitive learning: Model specification, approximations, and upper bounds

Author keywords

Cost sensitive learning; Empirical risk minimization; Imbalanced data sets; Loss function

Indexed keywords

ASYMPTOTICALLY OPTIMAL; CONVEX UPPER BOUND; COST-SENSITIVE; COST-SENSITIVE LEARNING; EMPIRICAL RESULTS; EMPIRICAL RISK MINIMIZATION; IMBALANCED DATA SETS; LOG LIKELIHOOD; LOSS FUNCTION; MISCLASSIFICATION COSTS; MISSPECIFICATION; MODEL SET; MODEL SPECIFICATIONS; PARAMETRIC ESTIMATION; PATTERN CLASSIFICATION; REAL WORLD DATA; RISK MINIMIZATION; THRESHOLDING; UPPER BOUND;

EID: 79551493545     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (65)

References (30)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. V. Chawla and N. Japkowicz. Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explorations, 6:2004, 2004.
    • (2004) SIGKDD Explorations , vol.6 , pp. 2004
    • Chawla, N.V.1    Japkowicz, N.2
  • 14
    • 0000444966 scopus 로고
    • A smoothed maximum score estimator for the binary response model
    • J. L. Horowitz. A smoothed maximum score estimator for the binary response model. Econometrica, 60:505-531, 1992.
    • (1992) Econometrica , vol.60 , pp. 505-531
    • Horowitz, J.L.1
  • 16
    • 79551486315 scopus 로고    scopus 로고
    • The construction of empirical credit scoring rules based on maximization principles
    • R. P. Lieli and H. White. The construction of empirical credit scoring rules based on maximization principles. Journal of Econometrics, 157:110-119, 2010.
    • (2010) Journal of Econometrics , vol.157 , pp. 110-119
    • Lieli, R.P.1    White, H.2
  • 17
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • DOI 10.1023/A:1012406528296
    • Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations. Machine Learning, 46:191-202, 2002. (Pubitemid 34129968)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 22
    • 26644455601 scopus 로고    scopus 로고
    • Recipes for the linear analysis of eeg
    • L. Parra, C. Spence, A. Gerson, and P. Sajda. Recipes for the linear analysis of eeg. NeuroImage, 28:326-341, 2005.
    • (2005) NeuroImage , vol.28 , pp. 326-341
    • Parra, L.1    Spence, C.2    Gerson, A.3    Sajda, P.4
  • 25
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Statistical Planning and Inference, 90:227-244, 2000.
    • (2000) Statistical Planning and Inference , vol.90 , pp. 227-244
    • Shimodaira, H.1
  • 27
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5):988-999, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 28
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50:1-25, 1982.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 30
    • 33749245586 scopus 로고    scopus 로고
    • Cost-sensitive learning by cost-proportionate example weighting. In
    • IEEE International Conference on Data Mining, ICDM 2003, IEEE
    • B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example weighting. In n Proceedings of the Third IEEE International Conference on Data Mining, ICDM 2003., pages 435-442. IEEE, 2003.
    • (2003) N Proceedings of the Third , pp. 435-442
    • Zadrozny, B.1    Langford, J.2    Abe, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.