-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817-1853, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
5
-
-
84867186048
-
Variational inference for Dirichlet process mixtures
-
D.M. Blei andM. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-144, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.1
, pp. 121-144
-
-
Blei, D.M.1
Jordan, M.I.2
-
6
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
7
-
-
38949128364
-
Max-margin classification of data with absent features
-
G. Chechik, G. Heitz, G. Elidan, P. Abbeel, and D. Koller. Max-margin classification of data with absent features. Journal of Machine Learning Research, 9:1-21, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1-21
-
-
Chechik, G.1
Heitz, G.2
Elidan, G.3
Abbeel, P.4
Koller, D.5
-
8
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
L. M. Collins, J. L. Schafer, and C. M. Kam. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4):330-351, 2001.
-
(2001)
Psychological Methods
, vol.6
, Issue.4
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
13
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1: 209-230, 1973.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 209-230
-
-
Ferguson, T.1
-
14
-
-
84865262077
-
Illustration of Bayesian inference in normal data models using Gibbs sampling
-
A. E. Gelfand, S. E. Hills, A. Racine-Poon, and A. F. M. Smith. Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of American Statistical Association, 85: 972-985, 1990.
-
(1990)
Journal of American Statistical Association
, vol.85
, pp. 972-985
-
-
Gelfand, A.E.1
Hills, S.E.2
Racine-Poon, A.3
Smith, A.F.M.4
-
19
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143:29-36, 1982.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.1
McNeil, B.2
-
23
-
-
0001940458
-
Adaptive mixtures of local experts
-
R. A. Jacobs, M. I. Jordon, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3:79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 79-87
-
-
Jacobs, R.A.1
Jordon, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
24
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6:181-214, 1994.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
30
-
-
84858766481
-
An alternative infinite mixture of Gaussian process experts. In
-
MIT Press
-
E. Meeds and S. Osindero. An alternative infinite mixture of Gaussian process experts. In NIPS 18, pages 883-890. MIT Press, 2006.
-
(2006)
NIPS
, vol.18
, pp. 883-890
-
-
Meeds, E.1
Osindero, S.2
-
31
-
-
0002881872
-
Bayesian curve fitting using multivariate normal mixtures
-
P. Müller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate normal mixtures. Biometrika, 83:67-79, 1996.
-
(1996)
Biometrika
, vol.83
, pp. 67-79
-
-
Müller, P.1
Erkanli, A.2
West, M.3
-
34
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In
-
A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems (NIPS), 2002.
-
(2002)
Advances in Neural Information Processing Systems (NIPS)
-
-
Ng, A.Y.1
Jordan, M.I.2
-
35
-
-
84896062664
-
Infinite mixtures of Gaussian process experts. In
-
MIT Press
-
C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In NIPS 14. MIT Press, 2002.
-
(2002)
NIPS
, vol.14
-
-
Rasmussen, C.E.1
Ghahramani, Z.2
-
36
-
-
60449108968
-
Bayesian nonparametric functional data analysis through density estimation
-
A. Rodríguez, D. B. Dunson, and A. E. Gelfang. Bayesian nonparametric functional data analysis through density estimation. Biometrika, 96, 2009.
-
(2009)
Biometrika
, vol.96
-
-
Rodríguez, A.1
Dunson, D.B.2
Gelfang, A.E.3
-
37
-
-
0017133178
-
Inference and missing data
-
D. B. Rubin. Inference and missing data. Biometrika, 63:581-592, 1976.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
39
-
-
85047673373
-
Missing data: Our view of the state of the art
-
J. L. Schafer and J. W. Graham. Missing data: Our view of the state of the art. Psychological Methods, 7:147-177, 2002.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
40
-
-
0000720609
-
A constructive definition of Dirichlet priors
-
J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 1:639-650, 1994.
-
(1994)
Statistica Sinica
, vol.1
, pp. 639-650
-
-
Sethuraman, J.1
-
44
-
-
33749249312
-
Hierarchical Dirichlet processes
-
Y. W. Teh, M. J. Beal M. I. Jordan, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566-1581, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 1566-1581
-
-
Teh, Y.W.1
Beal, M.J.2
Jordan, M.I.3
Blei, D.M.4
-
45
-
-
84899032239
-
The relevance vector machine
-
In T. K. Leen S. A. Solla and K. R. Müller, editors, MIT Press
-
M. E. Tipping. The relevance vector machine. In T. K. Leen S. A. Solla and K. R. Müller, editors, Advances in Neural Information Processing Systems (NIPS), volume 12, pages 652-658. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems (NIPS)
, vol.12
, pp. 652-658
-
-
Tipping, M.E.1
-
47
-
-
33645037239
-
Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme
-
X. Wang, A. Li, Z. Jiang, and H. Feng. Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme. BMC Bioinformatics, 7:32, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 32
-
-
Wang, X.1
Li, A.2
Jiang, Z.3
Feng, H.4
-
49
-
-
0002612391
-
Hierarchical priors and mixture models, with application in regression and density estimation
-
In P. R. Freeman and A. F. Smith, editors, John Wiley
-
M. West, P. Müller, and M. D. Escobar. Hierarchical priors and mixture models, with application in regression and density estimation. In P. R. Freeman and A. F. Smith, editors, Aspects of Uncertainty, pages 363-386. John Wiley, 1994.
-
(1994)
Aspects of Uncertainty
, pp. 363-386
-
-
West, M.1
Müller, P.2
Escobar, M.D.3
-
51
-
-
33847348383
-
On classification with incomplete data
-
D. Williams, X. Liao, Y. Xue, L. Carin, and B. Krishnapuram. On classification with incomplete data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):427-436, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.3
, pp. 427-436
-
-
Williams, D.1
Liao, X.2
Xue, Y.3
Carin, L.4
Krishnapuram, B.5
-
53
-
-
33846487387
-
Multi-task learning for classification with Dirichlet process priors
-
Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with Dirichlet process priors. Journal of Machine Learning Research, 8:35-63, 2007. (Pubitemid 46155123)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 35-63
-
-
Ya, X.1
Xuejun, L.2
Carin, L.3
Krishnapuram, B.4
-
54
-
-
2342586046
-
Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes. In
-
K. Yu, A. Schwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 616-623, 2003.
-
(2003)
Proceedings of the Conference on Uncertainty in Artificial Intelligence
, pp. 616-623
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
Ma, W.-Y.4
Zhang, H.5
-
56
-
-
3242661568
-
Sensing of unexploded ordnance with magnetometer and induction data: Theory and signal processing
-
Y. Zhang, L. M. Collins, H. Yu, C. Baum, and L. Carin. Sensing of unexploded ordnance with magnetometer and induction data: theory and signal processing. IEEE Transactions on Geoscience and Remote Sensing, 41(5):1005-1015, 2003.
-
(2003)
IEEE Transactions on Geoscience and Remote Sensing
, vol.41
, Issue.5
, pp. 1005-1015
-
-
Zhang, Y.1
Collins, L.M.2
Yu, H.3
Baum, C.4
Carin, L.5
-
57
-
-
33745456231
-
-
Technical Report 1530, Computer Sciences, University of Wisconsin-Madison
-
X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
-
(2005)
Semi-Supervised Learning Literature Survey
-
-
Zhu, X.1
|