-
1
-
-
68649086418
-
Maximum likelihood estimation for α-stable autoregressive processes
-
Andrews, B., Calder, M. And Davis, R. A. (2009). Maximum likelihood estimation for α-stable autoregressive processes, Ann. Statist., 37, 1946–1982.
-
(2009)
Ann. Statist.
, vol.37
, pp. 1946-1982
-
-
Andrews, B.1
Calder, M.2
Davis, R.A.3
-
2
-
-
0002443909
-
Processes of normal inverse Gaussian type
-
Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type, Finance Stoch., 2, 41–68.
-
(1998)
Finance Stoch.
, vol.2
, pp. 41-68
-
-
Barndorff-Nielsen, O.E.1
-
3
-
-
0035648379
-
Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics
-
Barndorff-Nielsen, O. E. And Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 167–241.
-
(2001)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.63
, pp. 167-241
-
-
Barndorff-Nielsen, O.E.1
Shephard, N.2
-
4
-
-
0040125256
-
On the functional central limit theorem and the law of the iterated logarithm for Markov processes
-
Bhattacharya, R. N. (1982). On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete, 60, 185–201.
-
(1982)
Z. Wahrsch. Verw. Gebiete
, vol.60
, pp. 185-201
-
-
Bhattacharya, R.N.1
-
5
-
-
0000361942
-
Sample functions of stochastic processes with stationary independent increments
-
Blumenthal, R. M. And Getoor, R. K. (1961). Sample functions of stochastic processes with stationary independent increments, J. Math. Mech., 10, 493–516.
-
(1961)
J. Math. Mech.
, vol.10
, pp. 493-516
-
-
Blumenthal, R.M.1
Getoor, R.K.2
-
6
-
-
38949175722
-
Estimation for nonnegative Lévy-driven Ornstein-Uhlenbeck processes
-
Brockwell, P. J., Davis, R. A. And Yang, Y. (2007). Estimation for nonnegative Lévy-driven Ornstein-Uhlenbeck processes, J. Appl. Probab., 44, 977–989.
-
(2007)
J. Appl. Probab.
, vol.44
, pp. 977-989
-
-
Brockwell, P.J.1
Davis, R.A.2
Yang, Y.3
-
7
-
-
39049133413
-
Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models
-
Creal, D. D. (2008). Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models, Comput. Statist. Data Anal., 52, 2863–2876.
-
(2008)
Comput. Statist. Data Anal.
, vol.52
, pp. 2863-2876
-
-
Creal, D.D.1
-
8
-
-
0041731533
-
Least absolute deviation estimation for regression with ARMA errors
-
Davis, R. A. And Dunsmuir, W. T. M. (1997). Least absolute deviation estimation for regression with ARMA errors, J. Theoret. Probab., 10, 481–497.
-
(1997)
J. Theoret. Probab.
, vol.10
, pp. 481-497
-
-
Davis, R.A.1
Dunsmuir, W.T.M.2
-
9
-
-
38249015513
-
M-estimation for autoregressions with infinite variance
-
Davis, R. A., Knight, K. And Liu, J. (1992). M-estimation for autoregressions with infinite variance, Stochastic Process. Appl., 40, 145–180.
-
(1992)
Stochastic Process. Appl.
, vol.40
, pp. 145-180
-
-
Davis, R.A.1
Knight, K.2
Liu, J.3
-
10
-
-
0000134542
-
The Brownian movement and stochastic equations
-
Doob, J. L. (1942). The Brownian movement and stochastic equations, Ann. of Math. (2), 43, 351–369.
-
(1942)
Ann. Of Math
, vol.43
, Issue.2
, pp. 351-369
-
-
Doob, J.L.1
-
11
-
-
0010159030
-
Asymptotic normality of sums of dependent random vectors
-
IV (Proc. Fourth Internat. Sympos., Dayton, Ohio, 1975), North-Holland, Amsterdam
-
Dvoretzky, A. (1977). Asymptotic normality of sums of dependent random vectors, Multivariate analysis, IV (Proc. Fourth Internat. Sympos., Dayton, Ohio, 1975), pp. 23–34, North-Holland, Amsterdam.
-
(1977)
Multivariate Analysis
, pp. 23-34
-
-
Dvoretzky, A.1
-
12
-
-
0034345360
-
Ornstein-Uhlenbeck-Cauchy process
-
Garbaczewski, P. And Olkiewicz, R. (2000). Ornstein-Uhlenbeck-Cauchy process, J. Math. Phys., 41, 6843–6860.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 6843-6860
-
-
Garbaczewski, P.1
Olkiewicz, R.2
-
14
-
-
67249134825
-
Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions
-
Hu, Y. And Long, H. (2009). Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions, Stochastic Processes Appl., 119, 2465–2480.
-
(2009)
Stochastic Processes Appl.
, vol.119
, pp. 2465-2480
-
-
Hu, Y.1
Long, H.2
-
15
-
-
33750974759
-
Parametric estimation for subordinators and induced OU processes
-
Jongbloed, G. And van der Meulen, F. H. (2006). Parametric estimation for subordinators and induced OU processes, Scand. J. Statist., 33, 825–847.
-
(2006)
Scand. J. Statist.
, vol.33
, pp. 825-847
-
-
Jongbloed, G.1
Van Der Meulen, F.H.2
-
16
-
-
33751010081
-
Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes
-
Jongbloed, G., van der Meulen, F. H. And van der Vaart, A. W. (2005). Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes, Bernoulli, 11, 759–791.
-
(2005)
Bernoulli
, vol.11
, pp. 759-791
-
-
Jongbloed, G.1
Van Der Meulen, F.H.2
Van Der Vaart, A.W.3
-
17
-
-
0032360240
-
Limiting distributions for L1 regression estimators under general conditions
-
Knight, K. (1998). Limiting distributions for L1 regression estimators under general conditions, Ann. Statist., 26, 755–770.
-
(1998)
Ann. Statist.
, vol.26
, pp. 755-770
-
-
Knight, K.1
-
18
-
-
84925105967
-
-
Cambridge University Press, Cambridge
-
Koenker, R. (2005). Quantile Regression, Cambridge University Press, Cambridge.
-
(2005)
Quantile Regression
-
-
Koenker, R.1
-
20
-
-
20744459274
-
Self-weighted least absolute deviation estimation for infinite variance autoregressive models
-
Ling, S. (2005). Self-weighted least absolute deviation estimation for infinite variance autoregressive models, J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 381–393.
-
(2005)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.67
, pp. 381-393
-
-
Ling, S.1
-
21
-
-
0000107758
-
Local asymptotic mixed normality for semimartingale experiments
-
Luschgy, H. (1992). Local asymptotic mixed normality for semimartingale experiments, Probab. Theory Related Fields, 92, 151–176.
-
(1992)
Probab. Theory Related Fields
, vol.92
, pp. 151-176
-
-
Luschgy, H.1
-
22
-
-
18244374693
-
On multi-dimensional Ornstein-Uhlenbeck processes driven by a general Lévy process
-
Masuda, H. (2004). On multi-dimensional Ornstein-Uhlenbeck processes driven by a general Lévy process, Bernoulli, 10, 1–24.
-
(2004)
Bernoulli
, vol.10
, pp. 1-24
-
-
Masuda, H.1
-
23
-
-
33751327477
-
Simple estimators for parametric Markovian trend of ergodic processes based on sampled data
-
Masuda, H. (2005). Simple estimators for parametric Markovian trend of ergodic processes based on sampled data, J. Japan Statist. Soc., 35, 147–170.
-
(2005)
J. Japan Statist. Soc.
, vol.35
, pp. 147-170
-
-
Masuda, H.1
-
24
-
-
33751319255
-
Ergodicity and exponential β-mixing bound for multidimensional diffusions with jumps
-
[Erratum: (2009) Stochastic Processes Appl., 119, 676–678.]
-
Masuda, H. (2007). Ergodicity and exponential β-mixing bound for multidimensional diffusions with jumps, Stochastic Processes Appl., 117, 35–56. [Erratum: (2009) Stochastic Processes Appl., 119, 676–678.]
-
(2007)
Stochastic Processes Appl.
, vol.117
, pp. 35-56
-
-
Masuda, H.1
-
25
-
-
0000976724
-
The Gaussian hare and the Laplacian tortoise: Computability of squared-error versus absolute-error estimators
-
Portnoy, S. And Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators, Statist. Sci., 12, 279–300.
-
(1997)
Statist. Sci.
, vol.12
, pp. 279-300
-
-
Portnoy, S.1
Koenker, R.2
-
26
-
-
0004044693
-
-
PhD thesis, University of Freiburg
-
Raible, S. (1999). Lévy Processes in Finance: Theory, Numerics, and Empirical Facts, PhD thesis, University of Freiburg, 2000.
-
(1999)
Lévy Processes in Finance: Theory, Numerics, and Empirical Facts
-
-
Raible, S.1
-
27
-
-
34247641640
-
Tempering stable processes
-
Rosiński, J. (2007). Tempering stable processes, Stochastic Process. Appl., 117, 677–707.
-
(2007)
Stochastic Process. Appl.
, vol.117
, pp. 677-707
-
-
Rosiński, J.1
-
28
-
-
10444228627
-
Asymptotic expansion formulas for functionals of ϵ-Markov processes with a mixing property
-
Sakamoto, Y. And Yoshida, N. (2004). Asymptotic expansion formulas for functionals of ϵ-Markov processes with a mixing property, Ann. Inst. Statist. Math., 56, 545–597.
-
(2004)
Ann. Inst. Statist. Math.
, vol.56
, pp. 545-597
-
-
Sakamoto, Y.1
Yoshida, N.2
-
30
-
-
0013204457
-
Zeroes of infinitely divisible densities
-
Sharpe, M. (1969). Zeroes of infinitely divisible densities, Ann. Math. Statist., 40, 1503–1505.
-
(1969)
Ann. Math. Statist.
, vol.40
, pp. 1503-1505
-
-
Sharpe, M.1
-
31
-
-
0003381366
-
Likelihood methods for diffusions with jumps, Statistical Inference in Stochastic Processes
-
Dekker, New York
-
Sørensen, M. (1991). Likelihood methods for diffusions with jumps, Statistical Inference in Stochastic Processes, 67–105, Probab. Pure Appl., 6, Dekker, New York.
-
(1991)
Probab. Pure Appl
, vol.6
, pp. 67-105
-
-
Sørensen, M.1
-
32
-
-
11844262421
-
Information criteria in model selection for mixing processes
-
Uchida, M. And Yoshida, N. (2001). Information criteria in model selection for mixing processes, Stat. Inference Stoch. Process., 4, 73–98.
-
(2001)
Stat. Inference Stoch. Process.
, vol.4
, pp. 73-98
-
-
Uchida, M.1
Yoshida, N.2
-
33
-
-
77950689921
-
Asymptotic expansion and information criteria
-
Uchida, M. And Yoshida, N. (2006). Asymptotic expansion and information criteria, SUT J. Math., 42, 31–58.
-
(2006)
SUT J. Math.
, vol.42
, pp. 31-58
-
-
Uchida, M.1
Yoshida, N.2
-
34
-
-
77950689086
-
Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations
-
Yoshida, N. (2005). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations, To appear in Ann. Inst. Statist. Math.
-
(2005)
Ann. Inst. Statist. Math.
-
-
Yoshida, N.1
|