-
1
-
-
67650695646
-
Magnet fall inside a conductive pipe: Motion and the role of the pipe wall thickness
-
EJPHD4, 0143-0807, 10.1088/0143-0807/30/4/018
-
Donoso G. Ladera C.L. Martín P. Magnet fall inside a conductive pipe: Motion and the role of the pipe wall thickness. Eur. J. Phys. 2009, 30:855-869. EJPHD4, 0143-0807, 10.1088/0143-0807/30/4/018.
-
(2009)
Eur. J. Phys.
, vol.30
, pp. 855-869
-
-
Donoso, G.1
Ladera, C.L.2
Martín, P.3
-
2
-
-
21344479275
-
A quantitative magnetic braking experiment
-
AJPIAS, 0002-9505, 10.1119/1.17356
-
MacLatchy C.S. Backman P. Bogan L. A quantitative magnetic braking experiment. Am. J. Phys. 1993, 61:1096-1106. AJPIAS, 0002-9505, 10.1119/1.17356.
-
(1993)
Am. J. Phys.
, vol.61
, pp. 1096-1106
-
-
MacLatchy, C.S.1
Backman, P.2
Bogan, L.3
-
3
-
-
46749139524
-
Magnetic braking revisited: Activities for the undergraduate laboratory
-
EJPHD4, 0143-0807, 10.1088/0143-0807/29/4/009
-
Ireson G. Twidle J. Magnetic braking revisited: Activities for the undergraduate laboratory. Eur. J. Phys. 2008, 29:745-751. EJPHD4, 0143-0807, 10.1088/0143-0807/29/4/009.
-
(2008)
Eur. J. Phys.
, vol.29
, pp. 745-751
-
-
Ireson, G.1
Twidle, J.2
-
4
-
-
0032335667
-
Eddy current damping of a magnet moving through a pipe
-
AJPIAS, 0002-9505, 10.1119/1.19060
-
Hahn K.D. Johnson E.M. Brokken A. Baldwin S. Eddy current damping of a magnet moving through a pipe. Am. J. Phys. 1998, 66:1066-1076. AJPIAS, 0002-9505, 10.1119/1.19060.
-
(1998)
Am. J. Phys.
, vol.66
, pp. 1066-1076
-
-
Hahn, K.D.1
Johnson, E.M.2
Brokken, A.3
Baldwin, S.4
-
5
-
-
33750504428
-
Electrodynamics of a magnet moving through a conducting pipe
-
CJPHAD, 0008-4204, 10.1139/P06-065
-
Partovi M.H. Morris E.J. Electrodynamics of a magnet moving through a conducting pipe. Can. J. Phys. 2006, 84:253-271. CJPHAD, 0008-4204, 10.1139/P06-065.
-
(2006)
Can. J. Phys.
, vol.84
, pp. 253-271
-
-
Partovi, M.H.1
Morris, E.J.2
-
6
-
-
0000884776
-
Magnetic braking: Improved theory
-
AJPIAS, 0002-9505, 10.1119/1.15570.
-
Heald M.A. Magnetic braking: Improved theory. Am. J. Phys. 1988, 56:521-522. AJPIAS, 0002-9505, 10.1119/1.15570.
-
(1988)
Am. J. Phys.
, vol.56
, pp. 521-522
-
-
Heald, M.A.1
-
7
-
-
33748703624
-
Electromagnetic braking: A simple quantitative model
-
AJPIAS, 0002-9505, 10.1119/1.2203645
-
Levin Y. Da Silveira S.L. Rizzato F.B. Electromagnetic braking: A simple quantitative model. Am. J. Phys. 2006, 74:815-817. AJPIAS, 0002-9505, 10.1119/1.2203645.
-
(2006)
Am. J. Phys.
, vol.74
, pp. 815-817
-
-
Levin, Y.1
Da Silveira, S.L.2
Rizzato, F.B.3
-
8
-
-
0000684557
-
Magnetic braking: Simple theory and experiment
-
AJPIAS, 0002-9505, 10.1119/1.15103
-
Wiederick H.D. Gauthier N. Campbell D.A. Rochon P. Magnetic braking: Simple theory and experiment. Am. J. Phys. 1987, 55:500-503. AJPIAS, 0002-9505, 10.1119/1.15103.
-
(1987)
Am. J. Phys.
, vol.55
, pp. 500-503
-
-
Wiederick, H.D.1
Gauthier, N.2
Campbell, D.A.3
Rochon, P.4
-
9
-
-
4344687314
-
Smart fluids: Current and future developments
-
MSCTEP, 0267-0836, 10.1179/026708304225019867.
-
Stanway R. Smart fluids: Current and future developments. Mater. Sci. Technol. 2004, 20:931-939. MSCTEP, 0267-0836, 10.1179/026708304225019867.
-
(2004)
Mater. Sci. Technol.
, vol.20
, pp. 931-939
-
-
Stanway, R.1
-
10
-
-
0011495416
-
Properties and applications of commercial magnetorheological fluids
-
JMSSER, 1045-389X
-
Jolly M.R. Bender J.W. Carlson D.J. Properties and applications of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct. 1999, 10:5-13. JMSSER, 1045-389X.
-
(1999)
J. Intell. Mater. Syst. Struct.
, vol.10
, pp. 5-13
-
-
Jolly, M.R.1
Bender, J.W.2
Carlson, D.J.3
-
11
-
-
0004227847
-
-
and 4th ed. (Wiley, New York, ), Chap. 36.
-
Halliday D. Resnick R. Krane K.S. Physics 1992, 2. and 4th ed. (Wiley, New York, ), Vol. Chap. 36.
-
(1992)
Physics
, vol.2
-
-
Halliday, D.1
Resnick, R.2
Krane, K.S.3
-
12
-
-
0001103182
-
Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV
-
AJPIAS, 0002-9505, 10.1119/1.17101.
-
Saslow W.M. Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV. Am. J. Phys. 1992, 60:693-711. AJPIAS, 0002-9505, 10.1119/1.17101.
-
(1992)
Am. J. Phys.
, vol.60
, pp. 693-711
-
-
Saslow, W.M.1
-
13
-
-
0030551922
-
Magnetic damping: Analysis of an eddy current brake using an airtrack
-
AJPIAS, 0002-9505, 10.1119/1.18122.
-
Cadwell L.H. Magnetic damping: Analysis of an eddy current brake using an airtrack. Am. J. Phys. 1996, 64:917-923. AJPIAS, 0002-9505, 10.1119/1.18122.
-
(1996)
Am. J. Phys.
, vol.64
, pp. 917-923
-
-
Cadwell, L.H.1
-
14
-
-
27744511554
-
Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements
-
EJPHD4, 0143-0807, 10.1088/0143-0807/26/6/002
-
Iñiguez J. Raposo V. Flores A.G. Zazo M. Hernández-López A. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements. Eur. J. Phys. 2005, 26:951-957. EJPHD4, 0143-0807, 10.1088/0143-0807/26/6/002.
-
(2005)
Eur. J. Phys.
, vol.26
, pp. 951-957
-
-
Iñiguez, J.1
Raposo, V.2
Flores, A.G.3
Zazo, M.4
Hernández-López, A.5
-
15
-
-
46749120250
-
Maglev for students
-
EJPHD4, 0143-0807, 10.1088/0143-0807/29/4/001.
-
Kraftmakher Y. Maglev for students. Eur. J. Phys. 2008, 29:663-669. EJPHD4, 0143-0807, 10.1088/0143-0807/29/4/001.
-
(2008)
Eur. J. Phys.
, vol.29
, pp. 663-669
-
-
Kraftmakher, Y.1
-
19
-
-
79251522556
-
-
Our approximation formula [Eq. ] was presented in Ref. 1 and was tested and compared against the circular current loop approximation found in Ref. 18, and it represents the measured experimental values of the magnet magnetic field with good accuracy. This approximation considers the nonzero second-order term in the expansion of the magnetic moment in terms of Legendre polynomials [Ref. 1, Eq. (28)
-
Our approximation formula [Eq. ] was presented in Ref. 1 and was tested and compared against the circular current loop approximation found in Ref. 18, and it represents the measured experimental values of the magnet magnetic field with good accuracy. This approximation considers the nonzero second-order term in the expansion of the magnetic moment in terms of Legendre polynomials [Ref. 1, Eq. (28)].
-
-
-
|