-
3
-
-
0018721357
-
A Hessenberg-Schur method for the problem AX + XB = C
-
G.H. Golub, S. Nash, and C. Vanloan, A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Auto. Control 24 (1979), pp. 909-913.
-
(1979)
IEEE Trans. Auto. Control
, vol.24
, pp. 909-913
-
-
Golub, G.H.1
Nash, S.2
Vanloan, C.3
-
4
-
-
0000379660
-
Computing a nearest symmetric positive semidefinite matrix
-
N.J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl. 103 (1988), pp. 103-118.
-
(1988)
Linear Algebra Appl.
, vol.103
, pp. 103-118
-
-
Higham, N.J.1
-
6
-
-
33747873198
-
An iterative method for the least square symmetric solution of matrix equation AXB = C
-
J.J. Hou, Z.Y. Peng, and X.L. Zhang, An iterative method for the least square symmetric solution of matrix equation AXB = C, Numer. Algor. 42 (2006), pp. 181-192.
-
(2006)
Numer. Algor.
, vol.42
, pp. 181-192
-
-
Hou, J.J.1
Peng, Z.Y.2
Zhang, X.L.3
-
7
-
-
0026961994
-
Inverse eigenvalue problem in structural design
-
K.T. Jeseph, Inverse eigenvalue problem in structural design, AIAA J. 30 (1992), pp. 2890-2896.
-
(1992)
AIAA J.
, vol.30
, pp. 2890-2896
-
-
Jeseph, K.T.1
-
8
-
-
34247628970
-
A minimal residual algorithm for the inconsistent matrix equation AXB = C over symmetric matrices
-
DOI 10.1016/j.amc.2006.10.011, PII S0096300306013907
-
Y. Lei and A.P. Liao, A minimal residual algorithm for the inconsistent matrix equation AXB = C over symmetric matrices, Appl. Math. Comput. 188(1) (2007), pp. 499-513. (Pubitemid 46686745)
-
(2007)
Applied Mathematics and Computation
, vol.188
, Issue.1
, pp. 499-513
-
-
Lei, Y.1
Liao, A.-p.2
-
9
-
-
34648816411
-
Optimal approximate solution of the matrix equation AXB = C over symmetric matrices
-
A.P. Liao and Y. Lei, Optimal approximate solution of the matrix equation AXB = C over symmetric matrices, J. Comput. Math. 25(5) (2007), pp. 543-552. (Pubitemid 47453732)
-
(2007)
Journal of Computational Mathematics
, vol.25
, Issue.5
, pp. 543-552
-
-
Liao, A.1
Lei, Y.2
-
10
-
-
84972074427
-
Common solutions to a pair of linear matrix equationsA1XB1 = C1,A2XB2 = C2
-
S.K. Mitra, Common solutions to a pair of linear matrix equationsA1XB1 = C1,A2XB2 = C2, Proc. Camb. Philos. Soc. 74 (1973), pp. 213-216.
-
(1973)
Proc. Camb. Philos. Soc.
, vol.74
, pp. 213-216
-
-
Mitra, S.K.1
-
11
-
-
26844500702
-
An iterative method for the least squares symmetric solution of the linear matrix equation AXB = C
-
Z.Y. Peng, An iterative method for the least squares symmetric solution of the linear matrix equation AXB = C, Appl. Math. Comput. 17 (2005), pp. 711-723.
-
(2005)
Appl. Math. Comput.
, vol.17
, pp. 711-723
-
-
Peng, Z.Y.1
-
12
-
-
77950823055
-
The orthogonal-symmetric or orthogonal-anti-symmetric least-square solutions of the matrix equation
-
X.Y. Peng, X.Y. Hu, and L. Zhang, The orthogonal-symmetric or orthogonal-anti-symmetric least-square solutions of the matrix equation, Chin. J. Eng. Math. 23(6) (2006), pp. 1048-1052.
-
(2006)
Chin. J. Eng. Math.
, vol.23
, Issue.6
, pp. 1048-1052
-
-
Peng, X.Y.1
Hu, X.Y.2
Zhang, L.3
-
13
-
-
33750459011
-
An efficient algorithm for the least-squares reflexive solution of the matrix equation A1XB1 = C1,A2XB2 = C2
-
Z.H. Peng, X.Y. Hu, and L. Zhang, An efficient algorithm for the least-squares reflexive solution of the matrix equation A1XB1 = C1,A2XB2 = C2, Appl. Math. Comput. 181 (2006), pp. 988-999.
-
(2006)
Appl. Math. Comput.
, vol.181
, pp. 988-999
-
-
Peng, Z.H.1
Hu, X.Y.2
Zhang, L.3
-
14
-
-
35349018439
-
The solution to matrix equationAX + XTC = B
-
F.X. Piao, Q.L. Zhang, and Z.F.Wang, The solution to matrix equationAX + XTC = B, J. Fran. Inst. 344(8) (2007), pp. 1056-1062.
-
(2007)
J. Fran. Inst.
, vol.344
, Issue.8
, pp. 1056-1062
-
-
Piao, F.X.1
Zhang, Q.L.2
Wang, Z.F.3
-
15
-
-
33846938283
-
Matrix iterative solutions to the least squares problem of BXAT = F with some linear constraints
-
Y.Y. Qiu, Z.Y. ZHang, and J.F. Lu, Matrix iterative solutions to the least squares problem of BXAT = F with some linear constraints, Appl. Math. Comput. 185 (2007), pp. 284-300.
-
(2007)
Appl. Math. Comput.
, vol.185
, pp. 284-300
-
-
Qiu, Y.Y.1
Zhang, Z.Y.2
Lu, J.F.3
-
16
-
-
1842829625
-
-
SIAM, Philadelphia, PA
-
Y. Saad, Iterative methods for sparse linear systems, 2nd ed., SIAM, Philadelphia, PA, 2003.
-
(2003)
Iterative Methods for Sparse Linear Systems, 2nd Ed.
-
-
Saad, Y.1
-
17
-
-
34249013831
-
A finite iterative method for solving a pair of linear matrix equations (AXB, CXD) = (E, F)
-
X.P. Sheng and G.L. Chen, A finite iterative method for solving a pair of linear matrix equations (AXB, CXD) = (E, F), Appl. Math. Comput. 189 (2007), pp. 1350-1358.
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 1350-1358
-
-
Sheng, X.P.1
Chen, G.L.2
-
18
-
-
77951139860
-
Iterative methods for solving linear matrix equation and linear matrix system
-
Y.F. Su and G.L. Chen, Iterative methods for solving linear matrix equation and linear matrix system, Int. J. Comput. Math. 87(4) (2010), pp. 763-774.
-
(2010)
Int. J. Comput. Math.
, vol.87
, Issue.4
, pp. 763-774
-
-
Su, Y.F.1
Chen, G.L.2
-
19
-
-
34247183597
-
Iterative algorithms for solving the matrix equation AXB + CXTD = E
-
M.H.Wang, X.H. Cheng, and M.S.Wei, Iterative algorithms for solving the matrix equation AXB + CXTD = E, Appl. Math. Comput. 187(2) (2007), pp. 622-629.
-
(2007)
Appl. Math. Comput.
, vol.187
, Issue.2
, pp. 622-629
-
-
Wang, M.H.1
Cheng, X.H.2
Wei, M.S.3
-
20
-
-
46849117337
-
Generalized reflexive solutions of the matrix equation AXB = D and associated optimal approximation problem
-
Y.X. Yuan and H. Dai, Generalized reflexive solutions of the matrix equation AXB = D and associated optimal approximation problem, Comput. Math. Appl. 56 (2008), pp. 1643-1649.
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1643-1649
-
-
Yuan, Y.X.1
Dai, H.2
|