-
1
-
-
0000092673
-
Variational iteration method-a kind of non-linear analytical technique: Some examples
-
J.H. He Variational iteration method-a kind of non-linear analytical technique: some examples Internat. J. Non-Linear Mech. 34 4 1999 699 708
-
(1999)
Internat. J. Non-Linear Mech.
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.H.1
-
2
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
J.H. He Application of homotopy perturbation method to nonlinear wave equations Chaos Solitons Fractals 26 3 2005 695 700
-
(2005)
Chaos Solitons Fractals
, vol.26
, Issue.3
, pp. 695-700
-
-
He, J.H.1
-
3
-
-
33746584753
-
New interpretation of homotopy perturbation method
-
J.H. He New interpretation of homotopy perturbation method Internat. J. Modern Phys. B 20 18 2006 2561 2568
-
(2006)
Internat. J. Modern Phys. B
, vol.20
, Issue.18
, pp. 2561-2568
-
-
He, J.H.1
-
4
-
-
77953133684
-
Homotopy perturbation method and the natural convection flow of a third grade fluid through a circular tube
-
P.D. Ariel Homotopy perturbation method and the natural convection flow of a third grade fluid through a circular tube Nonl. Sci. Lett. A: Math. Phys. Mech. 1 1 2010 43 52
-
(2010)
Nonl. Sci. Lett. A: Math. Phys. Mech.
, vol.1
, Issue.1
, pp. 43-52
-
-
Ariel, P.D.1
-
5
-
-
77953205877
-
The homotopy perturbation method for multi-order time fractional differential equations
-
A. Golbabai, and K. Sayevand The homotopy perturbation method for multi-order time fractional differential equations Nonl. Sci. Lett. A: Math. Phys. Mech. 1 2 2010 147 154
-
(2010)
Nonl. Sci. Lett. A: Math. Phys. Mech.
, vol.1
, Issue.2
, pp. 147-154
-
-
Golbabai, A.1
Sayevand, K.2
-
6
-
-
0004483962
-
The tanh method: I. Exact solutions of nonlinear evolution and wave equations
-
W. Malfliet, and W. Hereman The tanh method: I. exact solutions of nonlinear evolution and wave equations Phys. Scr. 54 1996 563 568 (Pubitemid 126631599)
-
(1996)
Physica Scripta
, vol.54
, Issue.6
, pp. 563-568
-
-
Malfliet, W.1
Hereman, W.2
-
7
-
-
13544272576
-
The tanh method: Solitons and periodic solutions for the DoddBulloughMikhailov and the TzitzeicaDoddBullough equations
-
A.M. Wazwaz The tanh method: solitons and periodic solutions for the DoddBulloughMikhailov and the TzitzeicaDoddBullough equations Chaos Solitons Fractals 25 1 2005 55 63
-
(2005)
Chaos Solitons Fractals
, vol.25
, Issue.1
, pp. 55-63
-
-
Wazwaz, A.M.1
-
8
-
-
0001051423
-
Exact solutions for a compound KdV-Burgers equation
-
M.L. Wang Exact solutions for a compound KdV-Burgers equation Phys. Lett. A 213 1996 279 287
-
(1996)
Phys. Lett. A
, vol.213
, pp. 279-287
-
-
Wang, M.L.1
-
10
-
-
27144471639
-
The repeated homogeneous balance method and its applications to nonlinear partial differential equations
-
Z. Xiqiang, W. Limin, and S. Weijun The repeated homogeneous balance method and its applications to nonlinear partial differential equations Chaos Solitons Fractals 28 2 2006 448 453
-
(2006)
Chaos Solitons Fractals
, vol.28
, Issue.2
, pp. 448-453
-
-
Xiqiang, Z.1
Limin, W.2
Weijun, S.3
-
11
-
-
0037121825
-
Applications of the Jacobi elliptic function method to special-type nonlinear equations
-
E. Fan, and Z. Jian Applications of the Jacobi elliptic function method to special-type nonlinear equations Phys. Lett. A 305 6 2002 383 392
-
(2002)
Phys. Lett. A
, vol.305
, Issue.6
, pp. 383-392
-
-
Fan, E.1
Jian, Z.2
-
12
-
-
30644460638
-
The improved F-expansion method and its applications
-
J.L. Zhang, M.L. Wang, Y.M. Wang, and Z.D. Fang The improved F-expansion method and its applications Phys. Lett. A 350 2006 103 109
-
(2006)
Phys. Lett. A
, vol.350
, pp. 103-109
-
-
Zhang, J.L.1
Wang, M.L.2
Wang, Y.M.3
Fang, Z.D.4
-
13
-
-
12944300203
-
A sinecosine method for handling nonlinear wave equations
-
A.M. Wazwaz A sinecosine method for handling nonlinear wave equations Math. Comput. Modelling 40 2004 499 508
-
(2004)
Math. Comput. Modelling
, vol.40
, pp. 499-508
-
-
Wazwaz, A.M.1
-
14
-
-
19444369705
-
The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations
-
DOI 10.1016/j.physleta.2005.03.066, PII S0375960105004767
-
E. Yomba The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations Phys. Lett. A 340 2005 149 160 (Pubitemid 40725522)
-
(2005)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.340
, Issue.1-4
, pp. 149-160
-
-
Yomba, E.1
-
15
-
-
13444309466
-
Simplest equation method to look for exact solutions of nonlinear differential equations
-
DOI 10.1016/j.chaos.2004.09.109, PII S0960077904005715
-
N.A. Kudryashov Simplest equation method to look for exact solutions of nonlinear differential equations Chaos Solitons Fractals 24 2005 1217 1231 (Pubitemid 40206049)
-
(2005)
Chaos, Solitons and Fractals
, vol.24
, Issue.5
, pp. 1217-1231
-
-
Kudryashov, N.A.1
-
16
-
-
37549033511
-
G′G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
-
G ′ G ) -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 372 2008 417 423
-
(2008)
Phys. Lett. A
, vol.372
, pp. 417-423
-
-
Wang, M.1
Li, X.2
Zhang, J.3
-
17
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
J.H. He, and X.H. Wu Exp-function method for nonlinear wave equations Chaos Solitons Fractals 30 2006 700 708
-
(2006)
Chaos Solitons Fractals
, vol.30
, pp. 700-708
-
-
He, J.H.1
Wu, X.H.2
-
18
-
-
34247350849
-
Application of Exp-function method to a KdV equation with variable coefficients
-
S. Zhang Application of Exp-function method to a KdV equation with variable coefficients Phys. Lett. A 365 56 2007 448 453
-
(2007)
Phys. Lett. A
, vol.365
, Issue.56
, pp. 448-453
-
-
Zhang, S.1
-
19
-
-
46449139466
-
Application of Exp-function method for (3+1)-dimensional nonlinear evolution equations
-
A. Boz, and A. Bekir Application of Exp-function method for (3+1)-dimensional nonlinear evolution equations Comput. Math. Appl. 56 2008 1451 1456
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1451-1456
-
-
Boz, A.1
Bekir, A.2
-
20
-
-
47049104261
-
Exp-function method to solve the nonlinear dispersive K(m,n) equations
-
X.W. Zhou, Y.X. Wen, and J.H. He Exp-function method to solve the nonlinear dispersive K (m, n ) equations Int. J. Nonlinear Sci. Numer. Simul. 9 3 2008 301 306
-
(2008)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.9
, Issue.3
, pp. 301-306
-
-
Zhou, X.W.1
Wen, Y.X.2
He, J.H.3
-
21
-
-
79251514418
-
The Exp-function method to solve the generalized BurgersFisher equation
-
E. Misirli, and Y. Gurefe The Exp-function method to solve the generalized BurgersFisher equation Nonlinear Sci. Lett. A: Math. Phys. Mech. 1 3 2010 323 328
-
(2010)
Nonlinear Sci. Lett. A: Math. Phys. Mech.
, vol.1
, Issue.3
, pp. 323-328
-
-
Misirli, E.1
Gurefe, Y.2
-
22
-
-
77951432014
-
Exact Solutions for the generalized BBM equation with variable coefficients
-
10.1155/2010/498249
-
C.A. Gomez, and A.H. Salas Exact Solutions for the generalized BBM equation with variable coefficients Math. Probl. Eng. 2010 10.1155/2010/498249
-
(2010)
Math. Probl. Eng.
-
-
Gomez, C.A.1
Salas, A.H.2
-
23
-
-
73449133326
-
Application of the Exp-function method for nonlinear differential- difference equations
-
A. Bekir Application of the Exp-function method for nonlinear differential-difference equations Appl. Math. Comput. 215 2010 4049 4053
-
(2010)
Appl. Math. Comput.
, vol.215
, pp. 4049-4053
-
-
Bekir, A.1
-
24
-
-
34548577315
-
Exp-function method for the hybrid-lattice system
-
S.D. Zhu Exp-function method for the hybrid-lattice system Int. J. Nonlinear Sci. Numer. Simul. 8 3 2007 461 464
-
(2007)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.8
, Issue.3
, pp. 461-464
-
-
Zhu, S.D.1
-
25
-
-
77953136504
-
Exact solutions of the Drinfel'dSokolovWilson equation using the Exp-function method
-
E. Misirli, and Y. Gurefe Exact solutions of the Drinfel'dSokolovWilson equation using the Exp-function method Appl. Math. Comput. 216 9 2010 2623 2627
-
(2010)
Appl. Math. Comput.
, vol.216
, Issue.9
, pp. 2623-2627
-
-
Misirli, E.1
Gurefe, Y.2
-
26
-
-
68649119352
-
Application of He's Exp-function method to the stochastic mKdV Equation
-
C.Q. Dai, and J.F. Zhang Application of He's Exp-function method to the stochastic mKdV Equation Int. J. Nonlinear Sci. Numer. Simul. 10 5 2009 675 680
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, Issue.5
, pp. 675-680
-
-
Dai, C.Q.1
Zhang, J.F.2
-
28
-
-
77949917236
-
The Three-wave method for nonlinear evolution equations
-
Z.D. Dai, C.J. Wang, S.Q. Lin, D.L. Li, and G. Mu The Three-wave method for nonlinear evolution equations Nonlinear Sci. Lett. A: Math. Phys. Mech. 1 1 2010 77 82
-
(2010)
Nonlinear Sci. Lett. A: Math. Phys. Mech.
, vol.1
, Issue.1
, pp. 77-82
-
-
Dai, Z.D.1
Wang, C.J.2
Lin, S.Q.3
Li, D.L.4
Mu, G.5
-
29
-
-
26844508856
-
Exact and explicit travelling wave solutions for the nonlinear Drinfeld-Sokolov system
-
DOI 10.1016/j.cnsns.2004.10.001, PII S1007570404002230
-
A. Wazwaz Exact and explicit traveling wave solutions for the nonlinear Drinfel'dSokolov system Commun. Nonlinear Sci. Numer. Simul. 11 2006 311 325 (Pubitemid 41448050)
-
(2006)
Communications in Nonlinear Science and Numerical Simulation
, vol.11
, Issue.3
, pp. 311-325
-
-
Wazwaz, A.-M.1
-
30
-
-
77953229125
-
Analytical solutions to a generalized Drinfel'dSokolov equation related to DSSH and KdV6
-
E. Sweet, and R.A.V. Gorder Analytical solutions to a generalized Drinfel'dSokolov equation related to DSSH and KdV6 Appl. Math. Comput. 216 10 2010 2783 2791
-
(2010)
Appl. Math. Comput.
, vol.216
, Issue.10
, pp. 2783-2791
-
-
Sweet, E.1
Gorder, R.A.V.2
-
31
-
-
0141455985
-
Auto-Backlund transformations and exact solutions for the generalized two-dimensional Kortewegde VriesBurgers-type equations and Burgers-type equations
-
B. Lia, Y. Chena, and H. Zhanga Auto-Backlund transformations and exact solutions for the generalized two-dimensional Kortewegde VriesBurgers-type equations and Burgers-type equations Z. Naturforsch. 58a 2003 464 472
-
(2003)
Z. Naturforsch.
, vol.58
, pp. 464-472
-
-
Lia, B.1
Chena, Y.2
Zhanga, H.3
|