메뉴 건너뛰기




Volumn 38, Issue 5, 2011, Pages 4972-4977

Tuning the structure and parameters of a neural network using cooperative binary-real particle swarm optimization

Author keywords

Cooperative; Neural network; Particle swarm optimization

Indexed keywords

COMPACT STRUCTURES; COOPERATIVE; HIDDEN NODES; LEARNING ABILITIES; OPTIMAL PARAMETER; PARTICLE SWARM; PARTICLE SWARM OPTIMIZATION ALGORITHM; SIMULATION EXPERIMENTS;

EID: 79151477701     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.09.154     Document Type: Article
Times cited : (35)

References (26)
  • 3
    • 0032205828 scopus 로고    scopus 로고
    • Evolutionary learning of modular neural networks with genetic programming
    • S.B. Cho, and K. Shimohara Evolutionary learning of modular neural networks with genetic programming Applied Intelligence 9 1998 191C200
    • (1998) Applied Intelligence , vol.9
    • Cho, S.B.1    Shimohara, K.2
  • 5
    • 33750024283 scopus 로고    scopus 로고
    • Cooperative particle swarm optimizers: A powerful and promising approach
    • M. El-Abd, and M. Kamel Cooperative particle swarm optimizers: A powerful and promising approach Studies in Computational Intelligence 31 2006 239 259
    • (2006) Studies in Computational Intelligence , vol.31 , pp. 239-259
    • El-Abd, M.1    Kamel, M.2
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornick, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 58349092725 scopus 로고    scopus 로고
    • Adaptive image interpolation using probabilistic neural network
    • S.H. Hsieh, and C.H. Chen Adaptive image interpolation using probabilistic neural network Expert Systems with Applications 36 2009 6025 6029
    • (2009) Expert Systems with Applications , vol.36 , pp. 6025-6029
    • Hsieh, S.H.1    Chen, C.H.2
  • 9
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for recurrent network design
    • C.F. Juang A hybrid genetic algorithm and particle swarm optimization for recurrent network design IEEE Transactions on Systems, Man and Cybernetics 32 2004 997 1006
    • (2004) IEEE Transactions on Systems, Man and Cybernetics , vol.32 , pp. 997-1006
    • Juang, C.F.1
  • 12
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • F.H.F. Leung, H.K. Lam, S.H. Ling, and P.K.S. Tam Tuning of the structure and parameters of a neural network using an improved genetic algorithm IEEE Transaction on Neural Networks 14 2003 79 88
    • (2003) IEEE Transaction on Neural Networks , vol.14 , pp. 79-88
    • Leung, F.H.F.1    Lam, H.K.2    Ling, S.H.3    Tam, P.K.S.4
  • 14
    • 58349117662 scopus 로고    scopus 로고
    • Pattern recognition using neural-fuzzy networks based on improved particle swam optimization
    • C.J. Lin, J.G. Wang, and C.Y. Lee Pattern recognition using neural-fuzzy networks based on improved particle swam optimization Expert Systems with Applications 36 2009 5402 5410
    • (2009) Expert Systems with Applications , vol.36 , pp. 5402-5410
    • Lin, C.J.1    Wang, J.G.2    Lee, C.Y.3
  • 15
    • 0037382121 scopus 로고    scopus 로고
    • Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong
    • W.Z. Lu, H.Y. Fan, and S.M. Lo Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong Neurocomputing 51 2003 387 400
    • (2003) Neurocomputing , vol.51 , pp. 387-400
    • Lu, W.Z.1    Fan, H.Y.2    Lo, S.M.3
  • 16
    • 0036131572 scopus 로고    scopus 로고
    • A comparison of evolution strategies and backpropagation for neural network training
    • M. Mandischer A comparison of evolution strategies and backpropagation for neural network training Neurocomputing 42 2002 87 117
    • (2002) Neurocomputing , vol.42 , pp. 87-117
    • Mandischer, M.1
  • 21
    • 34047131334 scopus 로고    scopus 로고
    • New Chaotic PSO-based neural network predictive control for nonlinear process
    • Y. Song, Z.Q. Chen, and Z.Z. Yuan New Chaotic PSO-based neural network predictive control for nonlinear process IEEE Transaction on Neural Networks 18 2007 595 603
    • (2007) IEEE Transaction on Neural Networks , vol.18 , pp. 595-603
    • Song, Y.1    Chen, Z.Q.2    Yuan, Z.Z.3
  • 22
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • J.T. Tsai, J.H. Chou, and T.K. Liu Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm IEEE Transaction on Neural Networks 17 2006 69 80
    • (2006) IEEE Transaction on Neural Networks , vol.17 , pp. 69-80
    • Tsai, J.T.1    Chou, J.H.2    Liu, T.K.3
  • 23
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao Evolving artificial neural networks Proceeding of IEEE 87 1999 1423 1447
    • (1999) Proceeding of IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 24
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • J.B. Yu, S.J. Wang, and L.F. Xi Evolving artificial neural networks using an improved PSO and DPSO Neurocomputing 71 2008 1054 1060
    • (2008) Neurocomputing , vol.71 , pp. 1054-1060
    • Yu, J.B.1    Wang, S.J.2    Xi, L.F.3
  • 25
    • 56349106409 scopus 로고    scopus 로고
    • PSO-based single multiplicative neuron for time serial prediction
    • L. Zhao, and Y.P. Yang PSO-based single multiplicative neuron for time serial prediction Expert Systems with Applications 36 2008 2805 2812
    • (2008) Expert Systems with Applications , vol.36 , pp. 2805-2812
    • Zhao, L.1    Yang, Y.P.2
  • 26
    • 67349150788 scopus 로고    scopus 로고
    • Eliciting compact T-S fuzzy models using subtractive clustering and coevolutionary particle swarm optimization
    • L. Zhao, Y.U. Yang, and Y. Zeng Eliciting compact T-S fuzzy models using subtractive clustering and coevolutionary particle swarm optimization Neurocomputing 72 2009 2569 2575
    • (2009) Neurocomputing , vol.72 , pp. 2569-2575
    • Zhao, L.1    Yang, Y.U.2    Zeng, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.