메뉴 건너뛰기




Volumn 4, Issue 1, 2011, Pages 29-43

Rough sets as a knowledge discovery and classification tool for the diagnosis of students with learning disabilities

Author keywords

Knowledge Discovery; LD Diagnosis; Learning Disabilities; Rough Set

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER AIDED DIAGNOSIS; DATA MINING; DECISION TREES; DEEP NEURAL NETWORKS; EDUCATION; NEURAL NETWORKS; TEACHING;

EID: 78851472136     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2011.9727761     Document Type: Article
Times cited : (9)

References (43)
  • 1
    • 85024237531 scopus 로고    scopus 로고
    • Proc. of Conf. on the Exploration into the Problems of the Perceptually Handicapped Child, Evanston, IL
    • Kirk, S. A., Behavioral Diagnosis and Remediation of Learning Disabilities. Proc. of Conf. on the Exploration into the Problems of the Perceptually Handicapped Child. pp. 1–7. Evanston, IL
    • Behavioral Diagnosis and Remediation of Learning Disabilities , pp. 1-7
    • Kirk, S.A.1
  • 2
    • 14744276516 scopus 로고    scopus 로고
    • Alternative Approach to the Definition and Identification of Learning Disabilities: Some Questions and Answers
    • Fletcher, J. M., Coulter, W. A., Reschly, D. J., and Vaughn, S., 2004. Alternative Approach to the Definition and Identification of Learning Disabilities:Some Questions and Answers. Annals of Dyslexia, 54 (2):304–331.
    • (2004) Annals of Dyslexia , vol.54 , Issue.2 , pp. 304-331
    • Fletcher, J.M.1    Coulter, W.A.2    Reschly, D.J.3    Vaughn, S.4
  • 3
    • 84882435996 scopus 로고    scopus 로고
    • extracted on Nov. 16th, 2009
    • National Center for Learning Disabilities extracted on Nov. 16th, 2009http://ncld.org/ld-basics/ld-explained/basic-facts/what-are-learning-disabilities
    • National Center for Learning Disabilities
  • 5
    • 37349024110 scopus 로고    scopus 로고
    • Evaluation of ANN and SVM Classifiers as Predictors to the Diagnosis of Students with Learning Disabilities
    • Wu, T.-K., Huang, S.-C., and Meng, Y.-R., 2008. Evaluation of ANN and SVM Classifiers as Predictors to the Diagnosis of Students with Learning Disabilities. Expert Systems with Applications, 34 (3):1846–1856.
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1846-1856
    • Wu, T.-K.1    Huang, S.-C.2    Meng, Y.-R.3
  • 6
    • 78751525235 scopus 로고    scopus 로고
    • On Discussing the Differences about the Learning Characteristics of LD
    • Chinese
    • Meng, Y.-R., and Chen, L.-R., 2002. On Discussing the Differences about the Learning Characteristics of LD. Bulletin of Special Education, 23:75–93. in Chinese
    • (2002) Bulletin of Special Education , vol.23 , pp. 75-93
    • Meng, Y.-R.1    Chen, L.-R.2
  • 8
    • 7544224739 scopus 로고    scopus 로고
    • Seemingly anomalous full scale IQ scores on the WAIS-III and the WISC-III
    • New York: Springer, 1
    • Reddon, J. R., Veen, S. V., and Reddon, J. E., 2004. “ Seemingly anomalous full scale IQ scores on the WAIS-III and the WISC-III ”. In Current Psychology, Vol. 23, 86–94. New York:Springer. 1
    • (2004) Current Psychology , vol.23 , pp. 86-94
    • Reddon, J.R.1    Veen, S.V.2    Reddon, J.E.3
  • 13
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C., and Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20:273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 38049045987 scopus 로고    scopus 로고
    • A Primer on Rough Sets: A New Approach to Drawing Conclusions from Data
    • Pawlak, Z., 2001. A Primer on Rough Sets:a New Approach to Drawing Conclusions from Data. Cardozo Law Review, 22:1407–1415.
    • (2001) Cardozo Law Review , vol.22 , pp. 1407-1415
    • Pawlak, Z.1
  • 16
    • 33748195464 scopus 로고    scopus 로고
    • Rough Set Theory in Analyzing the Attributes of Combination Values for the Insurance Market
    • Shyng, J. Y., Wang, F. K., Tzeng, G. H., and Wu, K. S., 2007. Rough Set Theory in Analyzing the Attributes of Combination Values for the Insurance Market. Expert Systems with Applications, 32 (1):56–64.
    • (2007) Expert Systems with Applications , vol.32 , Issue.1 , pp. 56-64
    • Shyng, J.Y.1    Wang, F.K.2    Tzeng, G.H.3    Wu, K.S.4
  • 17
    • 78851471660 scopus 로고    scopus 로고
    • Decision Making with Probabilistic Decision Tables
    • Ziarko, W., 1999. Decision Making with Probabilistic Decision Tables. Lecture Notes In Computer Science, 1711:463–471.
    • (1999) Lecture Notes In Computer Science , vol.1711 , pp. 463-471
    • Ziarko, W.1
  • 19
    • 53749107899 scopus 로고    scopus 로고
    • Dimensionality reduction based on rough set theory: A review
    • Thangavela, K., and Pethalakshmib, A., 2009. Dimensionality reduction based on rough set theory:A review. Applied Soft Computing, 9 (1):1–12.
    • (2009) Applied Soft Computing , vol.9 , Issue.1 , pp. 1-12
    • Thangavela, K.1    Pethalakshmib, A.2
  • 20
    • 84957798678 scopus 로고    scopus 로고
    • RSES and RSESlib–A Collection of Tools for Rough Set Computations
    • Bazan, J., and Szczuka, M., 2001. RSES and RSESlib–A Collection of Tools for Rough Set Computations. Lecture Notes in Artificial Intelligence, 2005:106–113.
    • (2001) Lecture Notes in Artificial Intelligence , vol.2005 , pp. 106-113
    • Bazan, J.1    Szczuka, M.2
  • 22
    • 0348231940 scopus 로고    scopus 로고
    • Rough Set Approach to Case- Based Reasoning Application
    • Huang, C. C., and Tseng, T., 2004. Rough Set Approach to Case- Based Reasoning Application. Expert Systems with Applications, 26 (3):369–385.
    • (2004) Expert Systems with Applications , vol.26 , Issue.3 , pp. 369-385
    • Huang, C.C.1    Tseng, T.2
  • 24
    • 33748310609 scopus 로고    scopus 로고
    • Rule learning: Ordinal Prediction Based on Rough Sets and Soft-Computing
    • Pattaraintakorn, P., Cercone, N., and Naruedomkul, K., 2006. Rule learning:Ordinal Prediction Based on Rough Sets and Soft-Computing. Applied Mathematics Letters, 19 (12):1300–1307.
    • (2006) Applied Mathematics Letters , vol.19 , Issue.12 , pp. 1300-1307
    • Pattaraintakorn, P.1    Cercone, N.2    Naruedomkul, K.3
  • 25
    • 34548258153 scopus 로고    scopus 로고
    • Data Analysis Based on Discernibility and Indiscernibility
    • Zhao, Y., Yao, Y., and Luo, F., 2007. Data Analysis Based on Discernibility and Indiscernibility. Information Sciences, 177 (22):4959–4976.
    • (2007) Information Sciences , vol.177 , Issue.22 , pp. 4959-4976
    • Zhao, Y.1    Yao, Y.2    Luo, F.3
  • 26
    • 33748894346 scopus 로고    scopus 로고
    • Rough Set-based Approach to Feature Selection in Customer Relationship Management
    • Tseng, T. L., and Huang, C. C., 2007. Rough Set-based Approach to Feature Selection in Customer Relationship Management. Omega, 35 (4):365–383.
    • (2007) Omega , vol.35 , Issue.4 , pp. 365-383
    • Tseng, T.L.1    Huang, C.C.2
  • 27
    • 33748133783 scopus 로고    scopus 로고
    • Applying Rough Sets to Prevent Customer Complaints for IC Packaging Foundry
    • Yang, H. H., Liu, T. C., and Lin, Y. T., 2007. Applying Rough Sets to Prevent Customer Complaints for IC Packaging Foundry. Expert Systems with Applications, 32 (1):151–156.
    • (2007) Expert Systems with Applications , vol.32 , Issue.1 , pp. 151-156
    • Yang, H.H.1    Liu, T.C.2    Lin, Y.T.3
  • 28
    • 36248994777 scopus 로고    scopus 로고
    • A Rough Set Approach for the Discovery of Classification Rules in Interval-valued Information Systems
    • Leung, Y., Fischer, M. M., Wu, W. Z., and Mi, J. S., 2008. A Rough Set Approach for the Discovery of Classification Rules in Interval-valued Information Systems. International Journal of Approximate Reasoning, 47 (2):233–246.
    • (2008) International Journal of Approximate Reasoning , vol.47 , Issue.2 , pp. 233-246
    • Leung, Y.1    Fischer, M.M.2    Wu, W.Z.3    Mi, J.S.4
  • 29
    • 58349088297 scopus 로고    scopus 로고
    • Some Issues about Outlier Detection in Rough Set Theory
    • Jiang, F., Sui, Y., and Cao, C., 2009. Some Issues about Outlier Detection in Rough Set Theory. Expert Systems with Applications, 36 (3):4680–4687.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4680-4687
    • Jiang, F.1    Sui, Y.2    Cao, C.3
  • 30
    • 60849087662 scopus 로고    scopus 로고
    • Rough sets to help medical diagnosis–Evidence from a Taiwan's clinic
    • Yang, H. H., and Wu, C. L., 2009. Rough sets to help medical diagnosis–Evidence from a Taiwan's clinic. Expert Systems with Applications, 36 (5):9293–9298.
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 9293-9298
    • Yang, H.H.1    Wu, C.L.2
  • 35
    • 0001138328 scopus 로고
    • A K-means Clustering Algorithm
    • Hartigan, J. A., and Wong, M. A., 1979. A K-means Clustering Algorithm. Applied Statistics, 28:100–108.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 36
    • 69049108619 scopus 로고    scopus 로고
    • Two-Step Clustering Analysis in Researches: A Case Study
    • Kayard, M., 2007. Two-Step Clustering Analysis in Researches:A Case Study. Eurasian J. of Educational Research, 28:89–99.
    • (2007) Eurasian J. of Educational Research , vol.28 , pp. 89-99
    • Kayard, M.1
  • 37
    • 0033956372 scopus 로고    scopus 로고
    • Rough Sets: A Knowledge Discovery Technique for Multifactorial Medical Outcomes
    • Øhrn, A., and Rowland, T., 2000. Rough Sets:A Knowledge Discovery Technique for Multifactorial Medical Outcomes. American J. of Physical Medicine & Rehabilitation, 79 (1):100–108.
    • (2000) American J. of Physical Medicine & Rehabilitation , vol.79 , Issue.1 , pp. 100-108
    • Øhrn, A.1    Rowland, T.2
  • 41
    • 78851470105 scopus 로고    scopus 로고
    • Base Rates of WISC-III Diagnostic Subtest Patterns in Taiwan: Standardization, Learning Disabled and ADHD Samples Applied
    • Chinese
    • Chen, H.-Y., and Yang, T.-R., 2000. Base Rates of WISC-III Diagnostic Subtest Patterns in Taiwan:Standardization, Learning Disabled and ADHD Samples Applied. Psychological Testing, 47 (2):91–110. in Chinese
    • (2000) Psychological Testing , vol.47 , Issue.2 , pp. 91-110
    • Chen, H.-Y.1    Yang, T.-R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.