-
1
-
-
33749651693
-
Intrinsically motivated learning of hierarchical collections of skills
-
A.G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical collections of skills. ICDL, 2004.
-
(2004)
ICDL
-
-
Barto, A.G.1
Singh, S.2
Chentanez, N.3
-
2
-
-
85166207010
-
Exploiting structure in policy construction
-
C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy construction. In IJCAI, pages 1104-1113, 1995.
-
(1995)
IJCAI
, pp. 1104-1113
-
-
Boutilier, C.1
Dearden, R.2
Goldszmidt, M.3
-
3
-
-
33749242809
-
Learning the structure of factored Markov decision processes in reinforcement learning problems
-
T. Degris, O. Sigaud, and P.H. Wuillemin. Learning the structure of factored Markov decision processes in reinforcement learning problems. In ICML, pages 257-264, 2006.
-
(2006)
ICML
, pp. 257-264
-
-
Degris, T.1
Sigaud, O.2
Wuillemin, P.H.3
-
4
-
-
0001806701
-
The MAXQ method for hierarchical reinforcement learning
-
T.G. Dietterich. The MAXQ method for hierarchical reinforcement learning. ICML, 1998.
-
(1998)
ICML
-
-
Dietterich, T.G.1
-
7
-
-
14844364287
-
Breve: A 3d environment for the simulation of decentralized systems and artificial life
-
Jon Klein. Breve: a 3d environment for the simulation of decentralized systems and artificial life. In Proc. of the Int. Conf. on Artificial Life, 2003.
-
Proc. of the Int. Conf. on Artificial Life, 2003
-
-
Klein, J.1
-
8
-
-
0003474284
-
-
The MIT Press, Cambridge, Massachusetts
-
Benjamin Kuipers. Qualitative Reasoning. The MIT Press, Cambridge, Massachusetts, 1994.
-
(1994)
Qualitative Reasoning
-
-
Kuipers, B.1
-
9
-
-
0013465187
-
Automatic discovery of subgoals in reinforcement learning using diverse density
-
Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement learning using diverse density. In ICML, pages 361-368, 2001.
-
(2001)
ICML
, pp. 361-368
-
-
McGovern, A.1
Barto, A.G.2
-
10
-
-
50849114173
-
Learning to predict the effects of actions: Synergy between rules and landmarks
-
J. Mugan and B. Kuipers. Learning to predict the effects of actions: Synergy between rules and landmarks. In ICDL, 2007.
-
(2007)
ICDL
-
-
Mugan, J.1
Kuipers, B.2
-
12
-
-
34748875246
-
Learning symbolic models of stochastic domains
-
H.M. Pasula, L.S. Zettlemoyer, and L.P. Kaelbling. Learning symbolic models of stochastic domains. JAIR, 29:309-352, 2007.
-
(2007)
JAIR
, vol.29
, pp. 309-352
-
-
Pasula, H.M.1
Zettlemoyer, L.S.2
Kaelbling, L.P.3
-
13
-
-
78751696189
-
-
J. Provost. sourceforge.net, 2008
-
J. Provost. sourceforge.net, 2008.
-
-
-
-
14
-
-
31844447221
-
Identifying useful subgoals in reinforcement learning by local graph partitioning
-
O. Simsek, A. Wolfe, and A. Barto. Identifying useful subgoals in reinforcement learning by local graph partitioning. ICML, pages 816-823, 2005.
-
(2005)
ICML
, pp. 816-823
-
-
Simsek, O.1
Wolfe, A.2
Barto, A.3
-
15
-
-
57149129517
-
Efficient structure learning in factored-state MDPs
-
A.L. Strehl, C. Diuk, and M.L. Littman. Efficient structure learning in factored-state MDPs. In AAAI, volume 22, page 645, 2007.
-
(2007)
AAAI
, vol.22
, pp. 645
-
-
Strehl, A.L.1
Diuk, C.2
Littman, M.L.3
-
17
-
-
0033170372
-
Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
-
R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181-211, 1999.
-
(1999)
Artificial Intelligence
, vol.112
, Issue.1-2
, pp. 181-211
-
-
Sutton, R.S.1
Precup, D.2
Singh, S.3
|