메뉴 건너뛰기




Volumn , Issue , 2010, Pages 97-106

Enhancing group recommendation by incorporating social relationship interactions

Author keywords

group consensus function; group recommendation; recommender systems

Indexed keywords

BRAINSTORMING SESSIONS; CONSENSUS FUNCTIONS; GENERIC FRAMEWORKS; GROUP MEMBERS; GROUP MEMBERSHIPS; GROUP RECOMMENDATION; GROUP RECOMMENDER SYSTEMS; KEY CHARACTERISTICS; MULTIPLE-GROUP; RECOMMENDATION METHODS; RECOMMENDATION PERFORMANCE; RECOMMENDER SYSTEMS; SOCIAL ACTIVITIES; SOCIAL RELATIONSHIPS; SOCIAL TV; USER STUDY;

EID: 78751690625     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1880071.1880087     Document Type: Conference Paper
Times cited : (183)

References (36)
  • 1
  • 4
    • 78751700631 scopus 로고    scopus 로고
    • IMDB. http://www.imdb.com.
  • 5
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17:734-749, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 6
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. In Proc. of SIGMOD 1993, pages 207-216, 1993.
    • (1993) Proc. of SIGMOD 1993 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 7
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of VLDB 1994, volume 1215, pages 487-499, 1994.
    • (1994) Proc. of VLDB 1994 , vol.1215 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 12
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online collaborative filtering. In Proc. of WWW '07, pages 271-280, 2007.
    • (2007) Proc. of WWW '07 , pp. 271-280
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 14
    • 84892455410 scopus 로고    scopus 로고
    • Predicting tie strength with social media
    • E. Gilbert and K. Karahalios. Predicting tie strength with social media. In Proc. of CHI '09, pages 211-220, 2009.
    • (2009) Proc. of CHI '09 , pp. 211-220
    • Gilbert, E.1    Karahalios, K.2
  • 15
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data mining and knowledge discovery, 8(1):53-87, 2004.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 16
  • 17
    • 0029181921 scopus 로고
    • Recommending and evaluating choices in a virtual community of use
    • W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating choices in a virtual community of use. In Proc. of CHI '95, pages 194-201, 1995.
    • (1995) Proc. of CHI '95 , pp. 194-201
    • Hill, W.1    Stead, L.2    Rosenstein, M.3    Furnas, G.4
  • 20
    • 78149313084 scopus 로고    scopus 로고
    • Cmar: Accurate and efficient classification based on multiple class-association rules
    • W. Li, J. Han, and J. Pei. Cmar: accurate and efficient classification based on multiple class-association rules. In Proc. of ICDM 2001, pages 369-376, 2001.
    • Proc. of ICDM 2001 , Issue.2001 , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 21
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7:76-80, 2003.
    • (2003) IEEE Internet Computing , vol.7 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 22
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. Proc. of KDD 1998, pages 80-86, 1998.
    • (1998) Proc. of KDD 1998 , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 24
    • 0842290000 scopus 로고    scopus 로고
    • Group modeling: Selecting a sequence of television items to suit a group of viewers
    • J. Masthoff. Group modeling: Selecting a sequence of television items to suit a group of viewers. Journal of User Modeling and User-Adapted Interaction, 14(1), 2004.
    • (2004) Journal of User Modeling and User-Adapted Interaction , vol.14 , Issue.1
    • Masthoff, J.1
  • 26
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: The identification of interesting web sites
    • M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27:313-331, 1997.
    • (1997) Machine Learning , vol.27 , pp. 313-331
    • Pazzani, M.1    Billsus, D.2
  • 27
    • 85030174634 scopus 로고
    • Grouplens: An open architecture for collaborative filtering of netnews
    • P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for collaborative filtering of netnews. In Proc. of CSCW '94, pages 175-186, 1994.
    • (1994) Proc. of CSCW '94 , pp. 175-186
    • Resnick, P.1    Iacovou, N.2    Suchak, M.3    Bergstrom, P.4    Riedl, J.5
  • 28
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 1988.
    • (1988) The American Statistician , vol.42 , Issue.1
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 29
    • 0029179043 scopus 로고
    • Social information filtering: Algorithms for automating "word of mouth"
    • U. Shardanand and P. Maes. Social information filtering: algorithms for automating "word of mouth". In Proc. of CHI '95, pages 210-217, 1995.
    • (1995) Proc. of CHI '95 , pp. 210-217
    • Shardanand, U.1    Maes, P.2
  • 30
    • 57349123708 scopus 로고    scopus 로고
    • Music selection using the partyvote democratic jukebox
    • D. Sprague, F. Wu, and M. Tory. Music selection using the partyvote democratic jukebox. In Proc. of AVI 2008, 2008.
    • (2008) Proc. of AVI 2008
    • Sprague, D.1    Wu, F.2    Tory, M.3
  • 32
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In Proc. of SIGMOD 1996, pages 1-12, 1996.
    • (1996) Proc. of SIGMOD 1996 , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 33
    • 68149100973 scopus 로고    scopus 로고
    • Unobtrusive dynamic modelling of tv programme preferences in a finnish household
    • E. Vildjiounaite, V. KyllÃucombining double acute accentnen, and T. Hannula. Unobtrusive dynamic modelling of tv programme preferences in a finnish household. Journal of Multimedia Systems, 15, 2009.
    • (2009) Journal of Multimedia Systems , vol.15
    • Vildjiounaite, E.1    KyllÃunen, V.2    Hannula, T.3
  • 34
    • 77954603933 scopus 로고    scopus 로고
    • Modeling relationship strength in online social networks
    • R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online social networks. In Proc. of WWW 2010, pages 981-990, 2010.
    • (2010) Proc. of WWW 2010 , pp. 981-990
    • Xiang, R.1    Neville, J.2    Rogati, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.