메뉴 건너뛰기




Volumn , Issue , 2010, Pages 80-83

A data mining framework for activity recognition in smart environments

Author keywords

Activity recognition; Machine learning; Smart environments

Indexed keywords

ACTIVITY RECOGNITION; FEATURE SELECTION; HEALTH MONITORING; MACHINE LEARNING TECHNIQUES; MACHINE-LEARNING; REAL SENSOR DATA; SENSOR DATA; SMART ENVIRONMENT; SMART ENVIRONMENTS; SMART HOMES;

EID: 78751659124     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IE.2010.22     Document Type: Conference Paper
Times cited : (54)

References (16)
  • 1
    • 84869472164 scopus 로고    scopus 로고
    • The smart floor: A mechanism for natural user identification and tracking
    • ed
    • R. J. Orr and G. D. Abowd, "The smart floor: A mechanism for natural user identification and tracking," in Conference on Human Factors in Computing Systems, ed, 2000, pp. 275-276.
    • (2000) Conference on Human Factors in Computing Systems , pp. 275-276
    • Orr, R.J.1    Abowd, G.D.2
  • 2
    • 41549133673 scopus 로고    scopus 로고
    • Activity recognition for the smart hospital
    • D. Sánchez, et al., "Activity recognition for the smart hospital," IEEE Intelligent Systems, vol. 23, pp. 50-57, 2008.
    • (2008) IEEE Intelligent Systems , vol.23 , pp. 50-57
    • Sánchez, D.1
  • 3
    • 35048836274 scopus 로고    scopus 로고
    • Activity recognition in the home using simple and ubiquitous sensors
    • E. M. Tapia, et al., "Activity recognition in the home using simple and ubiquitous sensors," Pervasive Computing, pp. 158-175, 2004.
    • (2004) Pervasive Computing , pp. 158-175
    • Tapia, E.M.1
  • 4
    • 78650144297 scopus 로고    scopus 로고
    • Recognizing independent and joint activities among multiple residents in smart environments
    • G. Singla, et al., "Recognizing independent and joint activities among multiple residents in smart environments," Journal of Ambient Intelligence and Humanized Computing, pp. 1-7, 2010.
    • (2010) Journal of Ambient Intelligence and Humanized Computing , pp. 1-7
    • Singla, G.1
  • 5
    • 68949150685 scopus 로고    scopus 로고
    • Annotating smart environment sensor data for activity learning
    • S. Szewcyzk, et al., "Annotating smart environment sensor data for activity learning," Technology and Health Care, vol. 17, pp. 161-169, 2009.
    • (2009) Technology and Health Care , vol.17 , pp. 161-169
    • Szewcyzk, S.1
  • 6
    • 84942213019 scopus 로고
    • The best two independent measurements are not the two best
    • T. M. Cover, "The best two independent measurements are not the two best," IEEE Transactions on Systems, Man, and Cybernetics, vol. 4, pp. 116-117, 1974.
    • (1974) IEEE Transactions on Systems, Man, and Cybernetics , vol.4 , pp. 116-117
    • Cover, T.M.1
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, et al., "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy," IEEE Transactions on pattern analysis and machine intelligence, vol. 27, 2005.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27
    • Peng, H.1
  • 8
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, pp. 81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 13
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • J. Platt, "Sequential minimal optimization: A fast algorithm for training support vector machines," Advances in Kernel Methods-Support Vector Learning, vol. 208, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning , vol.208
    • Platt, J.1
  • 14
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of online learning and an application to boosting
    • ed
    • Y. Freund and R. Schapire, "A desicion-theoretic generalization of online learning and an application to boosting," in Computational Learning Theory, ed, 1995, pp. 23-37.
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. F. T. Hastie and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," The Annals of Statistics, vol. 28, pp. 337-374, 2000.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-374
    • Hastie, J.F.T.1    Tibshirani, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.