메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 1782-1791

Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval

Author keywords

CBIR; Evolutionary computation; Genetic algorithms; Image retrieval; Relevance feedback

Indexed keywords

CBIR; CONTENT-BASED IMAGE RETRIEVAL; CROSSOVER STRATEGIES; DISTANCE-BASED; EVOLUTIONARY COMPUTATIONS; FEATURE VECTORS; HIGH LEVEL SEMANTICS; INTERACTIVE GENETIC ALGORITHM; LOW LEVEL DESCRIPTORS; MUTATION RATES; RELEVANCE FEEDBACK;

EID: 78751623207     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.05.022     Document Type: Conference Paper
Times cited : (42)

References (54)
  • 4
    • 0000530063 scopus 로고    scopus 로고
    • Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation
    • H. Takagi Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation Proceedings of the IEEE 89 9 2001 1275 1296
    • (2001) Proceedings of the IEEE , vol.89 , Issue.9 , pp. 1275-1296
    • Takagi, H.1
  • 5
    • 0037708475 scopus 로고    scopus 로고
    • Relevance feedback for image retrieval: A comprehensive review
    • X. Zhou, and T. Huang Relevance feedback for image retrieval: a comprehensive review Multimedia Systems 8 6 2003 536 544
    • (2003) Multimedia Systems , vol.8 , Issue.6 , pp. 536-544
    • Zhou, X.1    Huang, T.2
  • 6
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, infuences, and trends of the new age
    • R. Datta, D. Joshi, J. Li, and J.Z. Wang Image retrieval: ideas, infuences, and trends of the new age ACM Computing Surveys 40 2 2008 1 60 http://doi.acm.org/10.1145/1348246.1348248
    • (2008) ACM Computing Surveys , vol.40 , Issue.2 , pp. 1-60
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 9
    • 0033334587 scopus 로고    scopus 로고
    • Relevance feedback mechanism for content-based image retrieval
    • DOI 10.1016/S0306-4573(99)00021-7
    • G. Ciocca, and R. Schettini A relevance feedback mechanism for contentbased image retrieval Information Processing and Management 35 1 1999 605 632 (Pubitemid 30508640)
    • (1999) Information Processing and Management , vol.35 , Issue.5 , pp. 605-632
    • Ciocca, G.1    Schettini, R.2
  • 10
    • 63449109068 scopus 로고    scopus 로고
    • Fast query point movement techniques for large cbir systems
    • D. Liu, K.A. Hua, K. Vu, and N. Yu Fast query point movement techniques for large cbir systems IEEE Transactions on Knowledge and Data Engineering 21 2009 729 743 http://doi.ieeecomputersociety.org/10.1109/TKDE.2008.188
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.21 , pp. 729-743
    • Liu, D.1    Hua, K.A.2    Vu, K.3    Yu, N.4
  • 11
    • 34249025710 scopus 로고    scopus 로고
    • Applying logistic regression to relevance feedback in image retrieval systems
    • T. León, P. Zuccarello, G. Ayala, E. de Ves, and J. Domingo Applying logistic regression to relevance feedback in image retrieval systems Pattern Recognition 40 10 2007 2621 2632 http://dx.doi.org/10.1016/j.patcog. 2007.02.002
    • (2007) Pattern Recognition , vol.40 , Issue.10 , pp. 2621-2632
    • León, T.1    Zuccarello, P.2    Ayala, G.3    De Ves, E.4    Domingo, J.5
  • 12
    • 0036650984 scopus 로고    scopus 로고
    • PicSOM: Self-organizing image retrieval with mpeg-7 content descriptors
    • J. Laaksonen, M. Koskela, and E. Oja PicSOM: self-organizing image retrieval with mpeg-7 content descriptors IEEE Transactions on Neural Networks 13 4 2002 841 853
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.4 , pp. 841-853
    • Laaksonen, J.1    Koskela, M.2    Oja, E.3
  • 13
    • 0033897023 scopus 로고    scopus 로고
    • The bayesian image retrieval system, PicHunter: Theory, implementation and psychophysical experiments
    • I. Cox, M. Miller, T. Minka, T.V. Papathomas, and P. Yianilos The bayesian image retrieval system, PicHunter: theory, implementation and psychophysical experiments IEEE Transactions on Image Processing 9 1 2000 20 37
    • (2000) IEEE Transactions on Image Processing , vol.9 , Issue.1 , pp. 20-37
    • Cox, I.1    Miller, M.2    Minka, T.3    Papathomas, T.V.4    Yianilos, P.5
  • 14
    • 33744997452 scopus 로고    scopus 로고
    • A novel bayesian framework for relevance feedback in image content-based retrieval systems
    • E. de Ves, J. Domingo, G. Ayala, and P. Zuccarello A novel bayesian framework for relevance feedback in image content-based retrieval systems Pattern Recognition 39 2006 1622 1632
    • (2006) Pattern Recognition , vol.39 , pp. 1622-1632
    • De Ves, E.1    Domingo, J.2    Ayala, G.3    Zuccarello, P.4
  • 16
    • 0142169875 scopus 로고    scopus 로고
    • Relevance feedback in content-based image retrieval: Bayesian framework, feature sub-spaces, and progressive learning
    • Z. Su, H.J. Zhang, S. Li, and S. Ma Relevance feedback in content-based image retrieval: Bayesian framework, feature sub-spaces, and progressive learning IEEE Transactions on Image Processing 12 2003 924 937
    • (2003) IEEE Transactions on Image Processing , vol.12 , pp. 924-937
    • Su, Z.1    Zhang, H.J.2    Li, S.3    Ma, S.4
  • 17
    • 2442501267 scopus 로고    scopus 로고
    • Bayesian relevance feedback for content-based image retrieval
    • G. Giacinto, and F. Roli Bayesian relevance feedback for content-based image retrieval Pattern Recognition 37 7 2004 1499 1508
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1499-1508
    • Giacinto, G.1    Roli, F.2
  • 21
    • 3142679461 scopus 로고    scopus 로고
    • Improving image retrieval performance by inter-query learning with one-class support vector machines
    • I. Gondra, R. Heisterkamp, and J. Peng Improving image retrieval performance by inter-query learning with one-class support vector machines Neural Computing & Applications 13 2 2004 130 139
    • (2004) Neural Computing & Applications , vol.13 , Issue.2 , pp. 130-139
    • Gondra, I.1    Heisterkamp, R.2    Peng, J.3
  • 22
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval IEEE Transactions on Pattern Analysis and Machine Intelligence 28 7 2006 1088 1099
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 24
    • 24144495321 scopus 로고    scopus 로고
    • Clue: Cluster-based retrieval of images by unsupervised learning
    • Y. Chen, J. Wang, and R. Krovetz Clue: cluster-based retrieval of images by unsupervised learning IEEE Transactions on Image Processing 14 8 2005 1187 1201
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.8 , pp. 1187-1201
    • Chen, Y.1    Wang, J.2    Krovetz, R.3
  • 28
    • 34447649376 scopus 로고    scopus 로고
    • Adaptive salient block-based image retrieval in multi-feature space
    • Q. Zhang, and E. Izquierdo Adaptive salient block-based image retrieval in multi-feature space Signal Processing: Image Communication 22 2007 591 603
    • (2007) Signal Processing: Image Communication , vol.22 , pp. 591-603
    • Zhang, Q.1    Izquierdo, E.2
  • 30
    • 27544469924 scopus 로고    scopus 로고
    • Content-based retrieval using a multi-objective genetic algorithm
    • K.D. Tran Content-based retrieval using a multi-objective genetic algorithm Proceedings IEEE SoutheastCon 2005 561 569
    • (2005) Proceedings IEEE SoutheastCon , pp. 561-569
    • Tran, K.D.1
  • 37
    • 0032136585 scopus 로고    scopus 로고
    • Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis
    • F. Herrera, M. Lozano, and J.L. Verdegay Tackling real-coded genetic algorithms: operators and tools for behavioural analysis Articial Intelligence Review 12 4 1998 265 319
    • (1998) Articial Intelligence Review , vol.12 , Issue.4 , pp. 265-319
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 38
    • 67650100272 scopus 로고    scopus 로고
    • Survey on multiobjective evolutionary and real coded genetic algorithms
    • M. Raghuwanshi, and O. Kakde Survey on multiobjective evolutionary and real coded genetic algorithms Complexity International 11 2005 150 161
    • (2005) Complexity International , vol.11 , pp. 150-161
    • Raghuwanshi, M.1    Kakde, O.2
  • 39
    • 34247573442 scopus 로고    scopus 로고
    • A new crossover operator for real coded genetic algorithms
    • K. Deep, and M. Thakur A new crossover operator for real coded genetic algorithms Applied Mathematics and Computation 188 2007 895 911
    • (2007) Applied Mathematics and Computation , vol.188 , pp. 895-911
    • Deep, K.1    Thakur, M.2
  • 40
    • 14844346163 scopus 로고    scopus 로고
    • Hybrid crossover operators for real coded genetic algorithms: An experimental study
    • F. Herrera, M. Lozano, and A. Sánchez Hybrid crossover operators for real coded genetic algorithms: an experimental study Soft Computing 9 2005 280 298
    • (2005) Soft Computing , vol.9 , pp. 280-298
    • Herrera, F.1    Lozano, M.2    Sánchez, A.3
  • 41
    • 0003140039 scopus 로고
    • Predictive models for the breeder genetic algorithm. I. Continuous parameter optimization
    • H. Mühlenbein, and D. Schlierkamp-Voosen Predictive models for the breeder genetic algorithm. I. Continuous parameter optimization Evolutionary Computation 1 1993 25 49
    • (1993) Evolutionary Computation , vol.1 , pp. 25-49
    • Mühlenbein, H.1    Schlierkamp-Voosen, D.2
  • 43
    • 0000991259 scopus 로고
    • Simulated binary crossover for continuous search space
    • K. Deb, and R. Agrawal Simulated binary crossover for continuous search space Complex Systems 9 1995 115 148
    • (1995) Complex Systems , vol.9 , pp. 115-148
    • Deb, K.1    Agrawal, R.2
  • 44
    • 0000670186 scopus 로고
    • Equivalence class analysis of genetic algorithms
    • N. Radcliffe Equivalence class analysis of genetic algorithms Complex Systems 5 2 1991 183 205
    • (1991) Complex Systems , vol.5 , Issue.2 , pp. 183-205
    • Radcliffe, N.1
  • 45
    • 25444524580 scopus 로고    scopus 로고
    • Evolutionary algorithms for constrained parameter optimization problems
    • Z. Michalewicz, and M. Schoenauer Evolutionary algorithms for constrained parameter optimization problems Evolutionary Computation 4 1 1996 1 32
    • (1996) Evolutionary Computation , vol.4 , Issue.1 , pp. 1-32
    • Michalewicz, Z.1    Schoenauer, M.2
  • 48
    • 0003141576 scopus 로고
    • Evaluation of feedback retrieval using modi ed freezing, residual collection and test and control groups
    • Y. Chang, C. Cirillo, and J. Razor Evaluation of feedback retrieval using modi ed freezing, residual collection and test and control groups G. Salton, The Smart Retrieval System - Experiments in Document Processing 1971 Prentice Hall Inc. Englewood Cliffs, NJ 355 370
    • (1971) The Smart Retrieval System - Experiments in Document Processing , pp. 355-370
    • Chang, Y.1    Cirillo, C.2    Razor, J.3
  • 52
    • 0035427459 scopus 로고    scopus 로고
    • Content-based similarity retrieval of trademarks using relevance feedback
    • G. Ciocca, and R. Schettini Content-based similarity retrieval of trademarks using relevance feedback Pattern Recognition 34 8 2001 1639 1655
    • (2001) Pattern Recognition , vol.34 , Issue.8 , pp. 1639-1655
    • Ciocca, G.1    Schettini, R.2
  • 54
    • 70449726524 scopus 로고    scopus 로고
    • A naive relevance feedback model for content-based image retrieval using multiple similarity measures
    • M. Arevalillo-Herráez, F.J. Ferri, and J. Domingo A naive relevance feedback model for content-based image retrieval using multiple similarity measures Pattern Recognition 43 3 2010 619 629
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 619-629
    • Arevalillo-Herráez, M.1    Ferri, F.J.2    Domingo, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.