메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 2698-2713

Using sequential deviation to dynamically determine the number of clusters found by a local network neighbourhood artificial immune system

Author keywords

Clustering performance measures; dynamic clustering; Immune networks; Sequential deviation detection

Indexed keywords

ARTIFICIAL IMMUNE SYSTEM; DATA CLUSTERING; DATA SETS; DYNAMIC CLUSTERING; IMMUNE NETWORKS; LOCAL NETWORKS; NEIGHBOURHOOD; NETWORK THEORY; NUMBER OF CLUSTERS; PERFORMANCE MEASURE; SEQUENTIAL DEVIATION DETECTION; TECHNIQUES USED;

EID: 78751616383     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.10.017     Document Type: Conference Paper
Times cited : (9)

References (33)
  • 10
    • 0015956495 scopus 로고
    • Towards a network theory of the immune system
    • N.K. Jerne Towards a network theory of the immune system Ann. Immunol. (Inst. Pasteur) 125C 1974 373 389 PMID: 4142565
    • (1974) Ann. Immunol. (Inst. Pasteur) , vol.125 , pp. 373-389
    • Jerne, N.K.1
  • 11
    • 78751612710 scopus 로고    scopus 로고
    • A local network neighbourhood artificial immune system for data clustering
    • A.J. Graaff, and A.P. Engelbrecht A local network neighbourhood artificial immune system for data clustering D. Srinivasan, L. Wang, 2007 IEEE Congress on Evolutionary Computation 2007 IEEE Press Singapore 260 267
    • (2007) 2007 IEEE Congress on Evolutionary Computation , pp. 260-267
    • Graaff, A.J.1    Engelbrecht, A.P.2
  • 12
    • 55749097225 scopus 로고    scopus 로고
    • Towards a self regulating local network neighbourhood artificial immune system for data clustering
    • CEC 2008, IEEE World Congress on Computational Intelligence
    • A.J. Graaff, A.P. Engelbrecht, Towards a self regulating local network neighbourhood artificial immune system for data clustering, in: IEEE Congress on Evolutionary Computation, 2008. CEC 2008, IEEE World Congress on Computational Intelligence, 2008, pp. 633-640.
    • (2008) IEEE Congress on Evolutionary Computation, 2008 , pp. 633-640
    • Graaff, A.J.1    Engelbrecht, A.P.2
  • 15
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • E. Forgy Cluster analysis of multivariate data: efficiency vs. interpretability of classifications Biometrics 21 1965 768
    • (1965) Biometrics , vol.21 , pp. 768
    • Forgy, E.1
  • 20
    • 0014060964 scopus 로고
    • A clustering technique for summarizing multivariate data
    • G.H. Ball, and D.J. Hall A clustering technique for summarizing multivariate data Behav. Sci. 12 2 1967 153 155
    • (1967) Behav. Sci. , vol.12 , Issue.2 , pp. 153-155
    • Ball, G.H.1    Hall, D.J.2
  • 21
    • 34250268260 scopus 로고
    • DYNOC - A dynamic optimal cluster-seeking technique
    • J.T. Tou DYNOC - A dynamic optimal cluster-seeking technique Int. J. Parallel Program. 8 6 1979 541 547
    • (1979) Int. J. Parallel Program. , vol.8 , Issue.6 , pp. 541-547
    • Tou, J.T.1
  • 22
    • 0036153538 scopus 로고    scopus 로고
    • A synergistic automatic clustering technique (SYNERACT) for multispectral image analysis
    • K.Y. Huang A synergistic automatic clustering technique (SYNERACT) for multispectral image analysis Photogrammetric Eng. Remote Sens. 68 1 2002 33 40
    • (2002) Photogrammetric Eng. Remote Sens. , vol.68 , Issue.1 , pp. 33-40
    • Huang, K.Y.1
  • 25
    • 27944462549 scopus 로고
    • A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion
    • R.E. Kass, and L. Wasserman A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion J. Am. Stat. Assoc. 90 431 1995 928 934
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.431 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 28
    • 33750935628 scopus 로고    scopus 로고
    • Unsupervised clustering method with optimal estimation of the number of clusters: Application to image segmentation
    • C. Rosenberger, and K. Chehdi Unsupervised clustering method with optimal estimation of the number of clusters: application to image segmentation International Conference on Pattern Recognition, vol. 1 2000 1656 1659
    • (2000) International Conference on Pattern Recognition, Vol. 1 , pp. 1656-1659
    • Rosenberger, C.1    Chehdi, K.2
  • 31
    • 85039571873 scopus 로고    scopus 로고
    • A linear method for deviation detection in large databases
    • A. Arning, R. Agrawal, and P. Raghavan A linear method for deviation detection in large databases Proc. KDD 1996 164 169
    • (1996) Proc. KDD , pp. 164-169
    • Arning, A.1    Agrawal, R.2    Raghavan, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.