메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 2279-2285

An efficient classifier design integrating rough set and set oriented database operations

Author keywords

Classification; Data mining; Decision tree; Graph theory; Rough set theory

Indexed keywords

ATTRIBUTE REDUCTION ALGORITHM; CLASSIFICATION; CLASSIFICATION OF DATA; CLASSIFIER DESIGN; DECISION RULES; DECISION-TREE ALGORITHM; DIMENSIONALITY REDUCTION; FEATURE SUBSET SELECTION; KNOWLEDGE DISCOVERY PROCESS; MACHINE-LEARNING; PROBABILITY THEORY; REDUCTS; RELATIONAL ALGEBRA; ROUGH SET;

EID: 78751604427     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.08.008     Document Type: Conference Paper
Times cited : (20)

References (44)
  • 1
    • 0032023773 scopus 로고    scopus 로고
    • Efficient attribute-oriented generalization for knowledge discovery from large databases
    • C. Carter, and H. Hamilton Efficient attribute-oriented generalization for knowledge discovery from large databases IEEE Transactions on Knowledge and Data Engineering 10 1998 193 208
    • (1998) IEEE Transactions on Knowledge and Data Engineering , vol.10 , pp. 193-208
    • Carter, C.1    Hamilton, H.2
  • 5
    • 0032188308 scopus 로고    scopus 로고
    • Rough set theory and its applications to data analysis
    • Z. Pawlak Rough set theory and its applications to data analysis Cybernetics and Systems 29 1998 661 688
    • (1998) Cybernetics and Systems , vol.29 , pp. 661-688
    • Pawlak, Z.1
  • 8
    • 0037621960 scopus 로고    scopus 로고
    • Reduction and axiomization of covering generalized rough sets
    • W. Zhu, and Wang Reduction and axiomization of covering generalized rough sets Information Sciences 152 2003 217 230
    • (2003) Information Sciences , vol.152 , pp. 217-230
    • Zhu, W.1    Wang2
  • 13
    • 0002395767 scopus 로고
    • The discernibility matrics and functions in information systems
    • A. Skowron, and C. Rauszer The discernibility matrics and functions in information systems R. Slowinski, Intelligent Decision Support 1992 331 362
    • (1992) Intelligent Decision Support , pp. 331-362
    • Skowron, A.1    Rauszer, C.2
  • 14
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • R. Jensen, and Q. Shen Fuzzy-rough attribute reduction with application to web categorization Fuzzy Sets and Systems 141 2004 469 485
    • (2004) Fuzzy Sets and Systems , vol.141 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 15
    • 0036662454 scopus 로고    scopus 로고
    • Decision table reduction based on conditional information entropy
    • G.Y. Wang, H. Yu, and D.C. Yang Decision table reduction based on conditional information entropy Chinese Journal of Computers 25 7 2002 1 9
    • (2002) Chinese Journal of Computers , vol.25 , Issue.7 , pp. 1-9
    • Wang, G.Y.1    Yu, H.2    Yang, D.C.3
  • 16
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision system
    • J. Bazan A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision system L. Polkowski, A. Skowron, Rough Sets in Knowledge Discovery vol.1 1998 Physica-Verlag 321 365
    • (1998) Rough Sets in Knowledge Discovery , vol.1 , pp. 321-365
    • Bazan, J.1
  • 17
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • W. Swiniarski, and A. Skowron Rough set methods in feature selection and recognition Pattern Recognition Letters 24 6 2003 833 849
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, W.1    Skowron, A.2
  • 18
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • J. Quinlan, and R. Rivest Inferring decision trees using the minimum description length principle Information and Computation 80 1989 227 248
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.1    Rivest, R.2
  • 19
  • 21
    • 0034503468 scopus 로고    scopus 로고
    • Rough sets as a frontend as neural-networks texture classifiers
    • Roman, W. Swiniarski, and L. Hargis Rough sets as a frontend as neural-networks texture classifiers Neurocomputing 36 2001 85 102
    • (2001) Neurocomputing , vol.36 , pp. 85-102
    • Roman1    Swiniarski, W.2    Hargis, L.3
  • 22
    • 2142773984 scopus 로고    scopus 로고
    • Analysis of error-reject trade off in linearly combined multiple classifiers
    • G. Fumera, and F. Roli Analysis of error-reject trade off in linearly combined multiple classifiers Pattern Recognition 37 2004 1245 1265
    • (2004) Pattern Recognition , vol.37 , pp. 1245-1265
    • Fumera, G.1    Roli, F.2
  • 26
    • 0001931577 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: bagging, boosting, and variants Machine Learning 1998
    • (1998) Machine Learning
    • Bauer, E.1    Kohavi, R.2
  • 29
    • 33744584654 scopus 로고
    • Introduction of decision trees
    • Quinlan Introduction of decision trees Machine Learning 1 1 1986 81 106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan1
  • 30
    • 11544350121 scopus 로고    scopus 로고
    • Analysis on attribute reduction strategies of rough set
    • J. Wang, and D.Q. Miao Analysis on attribute reduction strategies of rough set Journal of Computer Science & Technology 13 2 1998 189 193
    • (1998) Journal of Computer Science & Technology , vol.13 , Issue.2 , pp. 189-193
    • Wang, J.1    Miao, D.Q.2
  • 33
    • 0001823341 scopus 로고    scopus 로고
    • An Experimental Comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T.G. Dietterich An Experimental Comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization Machine Learning 1998
    • (1998) Machine Learning
    • Dietterich, T.G.1
  • 40
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83 http://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 42
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark, and T. Niblett The CN2 induction algorithm Machine Learning 3 1 1989 261 284
    • (1989) Machine Learning , vol.3 , Issue.1 , pp. 261-284
    • Clark, P.1    Niblett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.