메뉴 건너뛰기




Volumn 21, Issue 1, 2011, Pages 17-29

Semi-supervised analysis of human brain tumours from partially labeled MRS information, using manifold learning models

Author keywords

human brain tumours; manifold learning; Semi supervised learning; unlabeled MRS information

Indexed keywords

BRAIN TUMOURS; DATA MODELING; GENERATIVE TOPOGRAPHIC MAPPING; HUMAN BRAIN; LAPLACIAN EIGENMAPS; MANIFOLD LEARNING; MEDICAL DECISION SUPPORTS; MEDICAL DIAGNOSIS; NEURO-ONCOLOGY; OUTCOME PREDICTION; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; UNLABELED MRS INFORMATION;

EID: 78751551710     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065711002626     Document Type: Conference Paper
Times cited : (26)

References (38)
  • 5
    • 67649185174 scopus 로고    scopus 로고
    • Nosologic imaging of the brain: Segmentation and classification using MRI and MRSI
    • J. Luts et al., Nosologic imaging of the brain: Segmentation and classification using MRI and MRSI, NMR in Biomedicine 22(4) (2009) 374-390.
    • (2009) NMR in Biomedicine , vol.22 , Issue.4 , pp. 374-390
    • Luts, J.1
  • 6
    • 33644534475 scopus 로고    scopus 로고
    • A multicentre, web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients
    • The INTERPRET Consortium
    • M. Julìa-Sapé, D. Acosta, M. Mier, C. Aŕus, D.Watson and The INTERPRET Consortium, A multicentre, web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients, Magn. Reson. Mater. Phys. MAGMA 19 (2006) 22-33.
    • (2006) Magn. Reson. Mater. Phys. MAGMA , vol.19 , pp. 22-33
    • Julìa-Sapé, M.1    Acosta, D.2    Mier, M.3    Aŕus, C.4    Watson, D.5
  • 7
    • 0037228026 scopus 로고    scopus 로고
    • Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study
    • A. R. Tate, C. Maj́os, A. Moreno, F. A. Howe, J. R. Griffiths and C. Aŕus, Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study, Magnetic Resonance in Medicine 49(1) (2003) 29-36.
    • (2003) Magnetic Resonance in Medicine , vol.49 , Issue.1 , pp. 29-36
    • Tate, A.R.1    Maj́os, C.2    Moreno, A.3    Howe, F.A.4    Griffiths, J.R.5    Aŕus, C.6
  • 8
    • 2942620732 scopus 로고    scopus 로고
    • Brain tumor classification based on long echo proton MRS signals
    • L. Lukas et al., Brain tumor classification based on long echo proton MRS signals, Artificial Intelligence in Medicine 31(1) (2004) 73-89.
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.1 , pp. 73-89
    • Lukas, L.1
  • 10
    • 59849101175 scopus 로고    scopus 로고
    • The effect of combining two echo times in automatic brain tumor classification by MRS
    • J. M. García-Gómez, et al., The effect of combining two echo times in automatic brain tumor classification by MRS, NMR in Biomedicine 21(10) (2008) 1112-1125.
    • (2008) NMR in Biomedicine , vol.21 , Issue.10 , pp. 1112-1125
    • García-Gómez, J.M.1
  • 11
    • 77952299959 scopus 로고    scopus 로고
    • SpectraClassifier 1.0: A user friendly, automated MRS-based classifier-development system
    • doi:10.1186/ 1471-2105-11-106
    • S. Ortega-Martorell, I. Olier, M. Julìa-Sapé and C. Aŕus, SpectraClassifier 1.0: A user friendly, automated MRS-based classifier-development system, BMC Bioinformatics 11 (2010) 106. [doi:10.1186/ 1471-2105-11-106].
    • (2010) BMC Bioinformatics , vol.11 , pp. 106
    • Ortega-Martorell, S.1    Olier, I.2    Julìa-Sapé, M.3    Aŕus, C.4
  • 12
    • 0033737589 scopus 로고    scopus 로고
    • Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis
    • A. Samant and H. Adeli, Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis, Computer-Aided Civil and Infrastructure Engineering 13(4) (2000) 241-250.
    • (2000) Computer-Aided Civil and Infrastructure Engineering , vol.13 , Issue.4 , pp. 241-250
    • Samant, A.1    Adeli, H.2
  • 13
    • 77951560201 scopus 로고    scopus 로고
    • Protein subcellular multilocalization prediction using a min-max modular support vector machine
    • Y. Yang and B. L. Lu, Protein subcellular multilocalization prediction using a min-max modular support vector machine, International Journal of Neural Systems 20(1) (2010) 13-28.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.1 , pp. 13-28
    • Yang, Y.1    Lu, B.L.2
  • 14
    • 58149494499 scopus 로고    scopus 로고
    • Integrating a Mixedfeature model and multiclass support vector Machine for facial expression recognition
    • D. T. Lin and D. C. Pan, Integrating a Mixedfeature model and multiclass support vector Machine for facial expression recognition, Integrated Computer-Aided Engineering 16(1) (2009) 61-74.
    • (2009) Integrated Computer-Aided Engineering , vol.16 , Issue.1 , pp. 61-74
    • Lin, D.T.1    Pan, D.C.2
  • 15
    • 73949094765 scopus 로고    scopus 로고
    • No-reference video quality measurement with support vector regression
    • H. C. Lian, No-reference video quality measurement with support vector regression, International Journal of Neural Systems 19(6) (2009) 457-464.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.6 , pp. 457-464
    • Lian, H.C.1
  • 16
    • 34249295615 scopus 로고    scopus 로고
    • A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection
    • J. Luts, A. Heerschap, J. A. K. Suykens and S. Van Huffel, A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection, Artificial Intelligence in Medicine 40 (2007) 87-102.
    • (2007) Artificial Intelligence in Medicine , vol.40 , pp. 87-102
    • Luts, J.1    Heerschap, A.2    Suykens, J.A.K.3    Van Huffel, S.4
  • 18
    • 26444592207 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data with label propagation
    • Carnegie Mellon Univ. (PA) U.S.
    • X. Zhu and Z. Ghahramani, Learning from labeled and unlabeled data with label propagation, Tech. rep., CMU-CALD-02-107, Carnegie Mellon Univ. (PA) U.S. (2002).
    • (2002) Tech. Rep., CMU-CALD-02-107
    • Zhu, X.1    Ghahramani, Z.2
  • 20
    • 84893510906 scopus 로고    scopus 로고
    • Label propagation for semi-supervised learning in self-organizing maps
    • L. Herrmann and A. Ultsch, Label propagation for semi-supervised learning in self-organizing maps, Proc. of WSOM (2007).
    • (2007) Proc. of WSOM
    • Herrmann, L.1    Ultsch, A.2
  • 21
    • 24944572401 scopus 로고    scopus 로고
    • Maps for the visualization of highdimensional data spaces
    • A. Ultsch, Maps for the visualization of highdimensional data spaces, Proc. of WSOM (2003).
    • (2003) Proc. of WSOM
    • Ultsch, A.1
  • 27
    • 40649084778 scopus 로고    scopus 로고
    • On multidimensional scaling and the embedding of self-organising maps
    • H. Yin, On multidimensional scaling and the embedding of self-organising maps, Neural Networks 21(2-3) (2008) 160-169.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 160-169
    • Yin, H.1
  • 29
    • 34147120474 scopus 로고
    • A note on two problems in connection with graphs
    • E. W. Dijkstra, A note on two problems in connection with graphs, Numerische Mathematik 1 (1959) 269-271.
    • (1959) Numerische Mathematik , vol.1 , pp. 269-271
    • Dijkstra, E.W.1
  • 32
    • 76249122585 scopus 로고    scopus 로고
    • Semi-supervised outcome prediction for a type of human brain tumour using partially labeled MRS information
    • R. Cruz-Barbosa and A. Vellido, Semi-supervised outcome prediction for a type of human brain tumour using partially labeled MRS information, Proc. of IDEAL LNCS 5788 (2009) 168-175.
    • (2009) Proc. of IDEAL LNCS , vol.5788 , pp. 168-175
    • Cruz-Barbosa, R.1    Vellido, A.2
  • 36
    • 33745402707 scopus 로고    scopus 로고
    • Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra
    • A. R. Tate et al., Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra, NMR in Biomedicine 19 (2006) 411-434.
    • (2006) NMR in Biomedicine , vol.19 , pp. 411-434
    • Tate, A.R.1
  • 38
    • 75749090307 scopus 로고    scopus 로고
    • Feature and model selection with discriminatory visualization for diagnostic classification of brain tumours
    • F. F. González-Navarro, Ll. A. Belanche-Muñoz, E. Romero, A. Vellido, M. Julìa-Sapé and C. Aŕus, Feature and model selection with discriminatory visualization for diagnostic classification of brain tumours, Neurocomputing 73(4-6) (2010) 622-632.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 622-632
    • González-Navarro, F.F.1    Belanche-Muñoz, L.A.2    Romero, E.3    Vellido, A.4    Julìa-Sapé, M.5    Aŕus, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.