메뉴 건너뛰기




Volumn 83, Issue 1, 2011, Pages

Light impurity in an equilibrium gas

Author keywords

[No Author keywords available]

Indexed keywords

DENSITY OF GASES; VELOCITY DISTRIBUTION;

EID: 78751516938     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.83.011107     Document Type: Article
Times cited : (7)

References (40)
  • 1
    • 78751509900 scopus 로고    scopus 로고
    • L. D'Alessio and P. L. Krapivsky, e-print arXiv: 1007.4589v1
    • L. D'Alessio and P. L. Krapivsky, e-print arXiv: 1007.4589v1.
  • 5
    • 0003065301 scopus 로고
    • in edited by G. Kirczenow and J. Marro (Springer-Verlag, Berlin
    • E. H. Hauge, in Transport Phenomena, edited by, G. Kirczenow, and, J. Marro, (Springer-Verlag, Berlin, 1974), Lecture Notes in Physics, Vol. 31, p. 337.
    • (1974) Transport Phenomena , pp. 337
    • Hauge, E.H.1
  • 10
    • 3843132077 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.75.1169
    • E. Fermi, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.75.1169 75, 1169 (1949).
    • (1949) Phys. Rev. , vol.75 , pp. 1169
    • Fermi, E.1
  • 12
    • 26944442672 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.5.1852
    • M. A. Lieberman and A. J. Lichtenberg, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.5.1852 5, 1852 (1972);
    • (1972) Phys. Rev. A , vol.5 , pp. 1852
    • Lieberman, M.A.1    Lichtenberg, A.J.2
  • 14
    • 1442355918 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.92.040601
    • F. Bouchet, F. Cecconi, and A. Vulpiani, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.040601 92, 040601 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 040601
    • Bouchet, F.1    Cecconi, F.2    Vulpiani, A.3
  • 16
    • 0002550838 scopus 로고
    • PRLTAO 0261-0523 10.1098/rstl.1867.0004
    • J. C. Maxwell, Philos. Trans. R. Soc. London PRLTAO 0261-0523 10.1098/rstl.1867.0004 157, 49 (1867).
    • (1867) Philos. Trans. R. Soc. London , vol.157 , pp. 49
    • Maxwell, J.C.1
  • 17
    • 78751498533 scopus 로고    scopus 로고
    • A few very special solutions have been found for so-called Maxwell molecules;
    • A few very special solutions have been found for so-called Maxwell molecules;
  • 18
    • 0002408006 scopus 로고
    • see, PRPLCM 0370-1573 10.1016/0370-1573(81)90002-8
    • see M. H. Ernst, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(81)90002-8 78, 1 (1981);
    • (1981) Phys. Rep. , vol.78 , pp. 1
    • Ernst, M.H.1
  • 20
    • 24844465049 scopus 로고
    • PHYADX 0378-4371 10.1016/0378-4371(78)90114-0
    • P. Résibois, Physica A PHYADX 0378-4371 10.1016/0378-4371(78) 90114-0 90, 273 (1978).
    • (1978) Physica A , vol.90 , pp. 273
    • Résibois, P.1
  • 21
    • 0038838179 scopus 로고
    • JSTPBS 0022-4715 10.1007/BF01010463
    • A. Gervois and J. Piasecki, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01010463 42, 1091 (1986).
    • (1986) J. Stat. Phys. , vol.42 , pp. 1091
    • Gervois, A.1    Piasecki, J.2
  • 22
    • 33745684954 scopus 로고    scopus 로고
    • PHYADX 0378-4371 10.1016/j.physa.2005.12.045
    • J. Piasecki and R. Soto, Physica A PHYADX 0378-4371 10.1016/j.physa.2005. 12.045 369, 379 (2006).
    • (2006) Physica A , vol.369 , pp. 379
    • Piasecki, J.1    Soto, R.2
  • 23
    • 77952420534 scopus 로고    scopus 로고
    • JSTPBS 0022-4715 10.1007/s10955-010-9976-x
    • A. Alastuey and J. Piasecki, J. Stat. Phys. JSTPBS 0022-4715 10.1007/s10955-010-9976-x 139, 991 (2010).
    • (2010) J. Stat. Phys. , vol.139 , pp. 991
    • Alastuey, A.1    Piasecki, J.2
  • 24
    • 78751562244 scopus 로고    scopus 로고
    • The particle velocity distribution satisfies the condition f(v,t)=f(-v,t) at all times if the initial velocity distribution is even, for example, f(v,0)=δ(v). In the general case, the velocity distribution quickly becomes even.
    • The particle velocity distribution satisfies the condition f (v, t) = f (- v, t) at all times if the initial velocity distribution is even, for example, f (v, 0) = δ (v). In the general case, the velocity distribution quickly becomes even.
  • 25
    • 0002091725 scopus 로고
    • NUPABL 0375-9474 10.1016/0375-9474(93)90327-T
    • C. Jarzynski and W. J. Šwia̧tecki, Nucl. Phys. A NUPABL 0375-9474 10.1016/0375-9474(93)90327-T 552, 1 (1993);
    • (1993) Nucl. Phys. A , vol.552 , pp. 1
    • Jarzynski, C.1    Šwia̧tecki, W.J.2
  • 26
    • 0001508031 scopus 로고
    • NUPABL 0375-9474 10.1016/0375-9474(93)90360-A
    • J. Błocki, F. Brut, and W. J. Šwia̧tecki, Nucl. Phys. A NUPABL 0375-9474 10.1016/0375-9474(93)90360-A 554, 107 (1993);
    • (1993) Nucl. Phys. A , vol.554 , pp. 107
    • Błocki, J.1    Brut, F.2    Šwia̧tecki, W.J.3
  • 27
    • 0001298103 scopus 로고
    • NUPABL 1539-3755 10.1103/PhysRevE.48.4340
    • C. Jarzynski, Phys. Rev. E NUPABL 1539-3755 10.1103/PhysRevE.48.4340 48, 4340 (1993).
    • (1993) Phys. Rev. e , vol.48 , pp. 4340
    • Jarzynski, C.1
  • 28
    • 78751477999 scopus 로고    scopus 로고
    • Apart from the hard-sphere gas, λ=∞, the integration measure is explicitly known for the Coulomb gas λ=1 (the Rutherford formula) and the Calogero gas λ=2; in these three cases, one can compute the factor A.
    • Apart from the hard-sphere gas, λ = ∞, the integration measure is explicitly known for the Coulomb gas λ = 1 (the Rutherford formula) and the Calogero gas λ = 2; in these three cases, one can compute the factor A.
  • 29
    • 78751476451 scopus 로고    scopus 로고
    • -1)in the small separation limit, and the potential actually describes the particle-atom interaction; the atom-atom interaction is irrelevant. In simulations, however, we usually assume that the particle-atom and atom-atom interactions are equal.
    • - 1) in the small separation limit, and the potential actually describes the particle-atom interaction; the atom-atom interaction is irrelevant. In simulations, however, we usually assume that the particle-atom and atom-atom interactions are equal.
  • 30
    • 78751512336 scopus 로고    scopus 로고
    • In the spatially homogeneous case the reflection symmetry is strictly obeyed [19] if it holds for the initial condition. In the spatially inhomogeneous case it is not so, yet the asymmetry is weak; for example, the average velocity ∫-∞∞dvvf(x,v,t) remains bounded, while the average speed ∫-∞∞dvvf(x,v,t) grows as τ. Physically, in the large time limit when the typical velocity is large, the particle undergoes a great number of collisions so its velocity can be ±v Physical Review C with almost the same probabilities.
    • In the spatially homogeneous case the reflection symmetry is strictly obeyed [19] if it holds for the initial condition. In the spatially inhomogeneous case it is not so, yet the asymmetry is weak; for example, the average velocity ∫ - ∞ ∞ dv vf (x, v, t) remains bounded, while the average speed ∫ - ∞ ∞ dv v f (x, v, t) grows as τ. Physically, in the large time limit when the typical velocity is large, the particle undergoes a great number of collisions so its velocity can be ± v Physical Review C with almost the same probabilities.
  • 31
    • 78751540218 scopus 로고    scopus 로고
    • This expression reproduces correctly the known values of the diffusion coefficients for the Lorentz gas in d=1,2,3 and we believe it holds in any d. In one dimension we recover D=v2ρ [7], while in three dimensions Eq. (60) reduces to D=v/(3πa2ρ); see [4,6,7]. The three-dimensional formula is well known. (Usually it is written in the form D=vℓ/3, with ℓ being the mean-free path.) The expression (see, e.g., Ref. [6]) for the diffusion coefficient in two dimensions, D=3v/(16aρ), is less known since the hard-sphere scattering is nonisotropic in two dimensions, so in that situation the Lorentz gas is harder to analyze than in three dimensions.
    • This expression reproduces correctly the known values of the diffusion coefficients for the Lorentz gas in d = 1, 2, 3 and we believe it holds in any d. In one dimension we recover D = v 2 ρ [7], while in three dimensions Eq. (60) reduces to D = v / (3 π a 2 ρ); see [4,6,7]. The three-dimensional formula is well known. (Usually it is written in the form D = v ℓ / 3, with ℓ being the mean-free path.) The expression (see, e.g., Ref. [6]) for the diffusion coefficient in two dimensions, D = 3 v / (16 a ρ), is less known since the hard-sphere scattering is nonisotropic in two dimensions, so in that situation the Lorentz gas is harder to analyze than in three dimensions.
  • 32
    • 78751499050 scopus 로고    scopus 로고
    • We used The On-Line Encyclopedia of Integer Sequences
    • We used The On-Line Encyclopedia of Integer Sequences, [http://www.research.att.com/njas/sequences/].
  • 33
    • 78751492898 scopus 로고    scopus 로고
    • Equation (85b) for R4 shows that this moment is integer when d=1,4,7,10,13,... (generally if d=1+3p with an arbitrary non-negative integer p) and noninteger in all other dimensions. Equations (85b) and (85c) show that the moments R4 and R6 are both integer when d=1,13,16,28,31,... (generally when d=1+15q or d=13+15q with an arbitrary non-negative integer q). Thus, in some special dimensions a few first moments R4, R6, etc., can be integer. It appears that in those dimensions only a few first moments are integer; the only exception is d=1, where all even moments are integer.
    • Equation (85b) for R 4 shows that this moment is integer when d = 1, 4, 7, 10, 13,... (generally if d = 1 + 3 p with an arbitrary non-negative integer p) and noninteger in all other dimensions. Equations (85b) and (85c) show that the moments R 4 and R 6 are both integer when d = 1, 13, 16, 28, 31,... (generally when d = 1 + 15 q or d = 13 + 15 q with an arbitrary non-negative integer q). Thus, in some special dimensions a few first moments R 4, R 6, etc., can be integer. It appears that in those dimensions only a few first moments are integer; the only exception is d = 1, where all even moments are integer.
  • 35
    • 78751516010 scopus 로고    scopus 로고
    • Since we are only interested in the first collision time, Δt, this problem can be conveniently thought as a decay process. When the particle with velocity v collides with a background atom its velocity changes and the particle "decays." Each background atom provides a decay channel described as a Poisson process with rate proportional to the absolute value of the relative velocity. The first collision time (i.e., decay time) is distributed as a Poisson process with a rate equal to the sum of the rates of the different channels [Eqs. (135a)-(135b)]. Moreover, the probability of decaying in any channel is given by the ratio of the rate for that channel over the total rate [Eq. (136)].
    • Since we are only interested in the first collision time, Δ t, this problem can be conveniently thought as a decay process. When the particle with velocity v collides with a background atom its velocity changes and the particle "decays." Each background atom provides a decay channel described as a Poisson process with rate proportional to the absolute value of the relative velocity. The first collision time (i.e., decay time) is distributed as a Poisson process with a rate equal to the sum of the rates of the different channels [Eqs. (135a)-(135b)]. Moreover, the probability of decaying in any channel is given by the ratio of the rate for that channel over the total rate [Eq. (136)].
  • 37
    • 0038057930 scopus 로고    scopus 로고
    • JCPSA6 1539-3755 10.1103/PhysRevE.67.026206
    • D. Cohen and D. A. Wisniacki, Phys. Rev. E JCPSA6 1539-3755 10.1103/PhysRevE.67.026206 67, 026206 (2003).
    • (2003) Phys. Rev. e , vol.67 , pp. 026206
    • Cohen, D.1    Wisniacki, D.A.2
  • 38
    • 67650881946 scopus 로고    scopus 로고
    • PRPLCM 0370-1573 10.1016/j.physrep.2009.06.001
    • B. Vacchini and K. Hornberger, Phys. Rep. PRPLCM 0370-1573 10.1016/j.physrep.2009.06.001 478, 71 (2009).
    • (2009) Phys. Rep. , vol.478 , pp. 71
    • Vacchini, B.1    Hornberger, K.2
  • 39
    • 78751528430 scopus 로고    scopus 로고
    • 0√T in the initial distributions (C5) and (C8) to ensure the validity of Eq. (26) during the entire time range τ>0. The same inequality is required for the applicability of Eq. (32) when the initial condition is given by Eq. (C10).
    • 0 √ T in the initial distributions (C5) and (C8) to ensure the validity of Eq. (26) during the entire time range τ > 0. The same inequality is required for the applicability of Eq. (32) when the initial condition is given by Eq. (C10).
  • 40
    • 78751498015 scopus 로고    scopus 로고
    • Exact solutions (C11) easily follow from the scaling solution [Eqs. (34) and (35)] after noting that the governing kinetic equation (32) possesses the time-translational invariance.
    • Exact solutions (C11) easily follow from the scaling solution [Eqs. (34) and (35)] after noting that the governing kinetic equation (32) possesses the time-translational invariance.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.