-
4
-
-
0004274342
-
-
Cambridge University Press Cambridge United Kingdom
-
S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, United Kingdom, 1998).
-
(1998)
Fatigue of Materials
-
-
Suresh, S.1
-
8
-
-
34548009356
-
-
R. K. Oruganti, R. Sivaramanivas, T. N. Karthik, V. Kommareddy, B. Ramadurai, B. Ganesan, E. J. Nieters, M. F. Gigliotti, M. E. Keller, and M. T. Shyamsunder, Int. J. Fatigue 29, 2032 (2007).
-
(2007)
Int. J. Fatigue
, vol.29
, pp. 2032
-
-
Oruganti, R.K.1
Sivaramanivas, R.2
Karthik, T.N.3
Kommareddy, V.4
Ramadurai, B.5
Ganesan, B.6
Nieters, E.J.7
Gigliotti, M.F.8
Keller, M.E.9
Shyamsunder, M.T.10
-
9
-
-
33646361845
-
-
V. V. Bulatov, L. L. Hsiung, M. Tang, A. Arsenlis, M. C. Bartelt, W. Cai, J. N. Florando, M. Hiratani, M. Rhee, G. Hommes, T. G. Pierce, and T. D. de la Rubia, Nature (London) 440, 1174 (2006).
-
(2006)
Nature (London)
, vol.440
, pp. 1174
-
-
Bulatov, V.V.1
Hsiung, L.L.2
Tang, M.3
Arsenlis, A.4
Bartelt, M.C.5
Cai, W.6
Florando, J.N.7
Hiratani, M.8
Rhee, M.9
Hommes, G.10
Pierce, T.G.11
De La Rubia, T.D.12
-
12
-
-
38749152512
-
-
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, and V. V. Bulatov, Modell. Simul. Mater. Sci. Eng. 15, 553 (2007).
-
(2007)
Modell. Simul. Mater. Sci. Eng.
, vol.15
, pp. 553
-
-
Arsenlis, A.1
Cai, W.2
Tang, M.3
Rhee, M.4
Oppelstrup, T.5
Hommes, G.6
Pierce, T.G.7
Bulatov, V.V.8
-
16
-
-
78751563932
-
-
2 is a Common Factor in the Power Series Model Derived in This Paper
-
2 is a common factor in the power series model derived in this paper.
-
-
-
-
17
-
-
78751512611
-
-
This Assumption has been Numerically Verified, but the Discussion is Omitted Here
-
This assumption has been numerically verified, but the discussion is omitted here.
-
-
-
-
18
-
-
78751508517
-
-
It should be noted that by varying ν while holding μ constant in an elastically isotropic medium will cause the Young's modulus e of the material to change
-
It should be noted that by varying ν while holding μ constant in an elastically isotropic medium will cause the Young's modulus E of the material to change. This obviously cannot be accomplished in a physical experiment, but is done here to illustrate the problem.
-
This Obviously Cannot be Accomplished in a Physical Experiment, but is done Here to Illustrate the Problem
-
-
-
20
-
-
78751545488
-
-
This Model Could be Used for an Arbitrary Dislocation, but Calculating A will be More Difficult
-
This model could be used for an arbitrary dislocation, but calculating A will be more difficult.
-
-
-
-
21
-
-
78751563000
-
-
The Solution to Eq. 42) and all Subsequent Steps of the Derivation of this Model Are Omitted to Save Space
-
The solution to Eq. (42) and all subsequent steps of the derivation of this model are omitted to save space.
-
-
-
-
25
-
-
0032688282
-
-
J. Frouin, S. Sathish, T. E. Matikas, and J. K. J. Na, Mater. Res. 14, 1295 (1999).
-
(1999)
Mater. Res.
, vol.14
, pp. 1295
-
-
Frouin, J.1
Sathish, S.2
Matikas, T.E.3
Na, J.K.J.4
-
26
-
-
33748567459
-
-
J. Y. Kim, L. J. Jacobs, J. Qu, and J. W. Littles, J. Acoust. Soc. Am. 120, 1266 (2006).
-
(2006)
J. Acoust. Soc. Am.
, vol.120
, pp. 1266
-
-
Kim, J.Y.1
Jacobs, L.J.2
Qu, J.3
Littles, J.W.4
|