-
1
-
-
77949773791
-
The orthogonal Weingarten formula in compact form
-
Banica T. The orthogonal Weingarten formula in compact form. Lett. Math. Phys. 2010, 91:105-118.
-
(2010)
Lett. Math. Phys.
, vol.91
, pp. 105-118
-
-
Banica, T.1
-
4
-
-
77954624658
-
Quantum isometries and noncommutative spheres
-
Banica T., Goswami D. Quantum isometries and noncommutative spheres. Comm. Math. Phys. 2010, 298:343-356.
-
(2010)
Comm. Math. Phys.
, vol.298
, pp. 343-356
-
-
Banica, T.1
Goswami, D.2
-
5
-
-
72249105743
-
On some properties of orthogonal Weingarten functions
-
Collins B., Matsumoto S. On some properties of orthogonal Weingarten functions. J. Math. Phys. 2009, 50:1-18.
-
(2009)
J. Math. Phys.
, vol.50
, pp. 1-18
-
-
Collins, B.1
Matsumoto, S.2
-
6
-
-
33646530323
-
Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group
-
Collins B., śniady P. Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group. Comm. Math. Phys. 2006, 264:773-795.
-
(2006)
Comm. Math. Phys.
, vol.264
, pp. 773-795
-
-
Collins, B.1
śniady, P.2
-
7
-
-
77952065433
-
Quantum rotatability
-
Curran S. Quantum rotatability. Trans. Amer. Math. Soc. 2010, 362:4831-4851.
-
(2010)
Trans. Amer. Math. Soc.
, vol.362
, pp. 4831-4851
-
-
Curran, S.1
-
9
-
-
78751551855
-
-
Primitive factorizations, Jucys-Murphy elements, and matrix models, in: FPSAC in: Discrete Math. Theor. Comput. Sci., in press. arxiv:1005.0151
-
S. Matsumoto, J. Novak, Primitive factorizations, Jucys-Murphy elements, and matrix models, in: FPSAC 2010, in: Discrete Math. Theor. Comput. Sci., in press, arxiv:1005.0151.
-
(2010)
-
-
Matsumoto, S.1
Novak, J.2
-
10
-
-
0037104083
-
Hua type integrals over unitary groups and over projective limits of unitary groups
-
Neretin Y.A. Hua type integrals over unitary groups and over projective limits of unitary groups. Duke Math. J. 2002, 114:239-266.
-
(2002)
Duke Math. J.
, vol.114
, pp. 239-266
-
-
Neretin, Y.A.1
-
11
-
-
78751505631
-
Jucys-Murphy Elements and the Unitary Weingarten Function
-
Novak J. Jucys-Murphy Elements and the Unitary Weingarten Function. Banach Center Publ. 2010, vol. 89. pp. 231-235.
-
(2010)
Banach Center Publ.
, vol.89
, pp. 231-235
-
-
Novak, J.1
-
12
-
-
0001471212
-
Unitary representations of infinite-dimensional pairs (G,K) and the formalism of R. Howe
-
Olshanskii G.I. Unitary representations of infinite-dimensional pairs (G,K) and the formalism of R. Howe. Adv. Stud. Contemp. Math. 1990, 7:269-463.
-
(1990)
Adv. Stud. Contemp. Math.
, vol.7
, pp. 269-463
-
-
Olshanskii, G.I.1
-
14
-
-
24644460599
-
Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices
-
Petz D., Réffy J. Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices. Probab. Theory Related Fields 2005, 133:175-189.
-
(2005)
Probab. Theory Related Fields
, vol.133
, pp. 175-189
-
-
Petz, D.1
Réffy, J.2
-
15
-
-
36749112217
-
Asymptotic behavior of group integrals in the limit of infinite rank
-
Weingarten D. Asymptotic behavior of group integrals in the limit of infinite rank. J. Math. Phys. 1978, 19:999-1001.
-
(1978)
J. Math. Phys.
, vol.19
, pp. 999-1001
-
-
Weingarten, D.1
-
16
-
-
77949774189
-
Jucys-Murphy elements and Weingarten matrices
-
Zinn-Justin P. Jucys-Murphy elements and Weingarten matrices. Lett. Math. Phys. 2010, 91:119-127.
-
(2010)
Lett. Math. Phys.
, vol.91
, pp. 119-127
-
-
Zinn-Justin, P.1
|