-
4
-
-
78751512259
-
-
note
-
0 exceeds a critical value (which is on the order of unity for monodisperse entangled linear polymers) and the oscillatory frequency ω is higher than 1/τ. In (c), the resulting shear stress after a step strain relaxes in a quantitatively different way (from its relaxation behavior after a small step shear) when the amplitude of the step shear is large.
-
-
-
-
5
-
-
70249112161
-
-
For some recent publications invoking nonlinear rheological measurements to characterize polymer materials, see
-
For some recent publications invoking nonlinear rheological measurements to characterize polymer materials, see: Tezel, A. K.; Oberhauser, J. P.; Graham, R. S. J. Rheol. 2009, 53, 1193
-
(2009)
J. Rheol.
, vol.53
, pp. 1193
-
-
Tezel, A.K.1
Oberhauser, J.P.2
Graham, R.S.3
-
6
-
-
67651213966
-
-
Hoyle, D. M.; Harlen, O. G.; Auhl, D. J. Rheol. 2009, 53, 917
-
(2009)
J. Rheol.
, vol.53
, pp. 917
-
-
Hoyle, D.M.1
Harlen, O.G.2
Auhl, D.3
-
7
-
-
70249098410
-
-
Kapnistos, M.; Kirkwood, K. M.; Ramirez, J. J. Rheol. 2009, 53, 1133
-
(2009)
J. Rheol.
, vol.53
, pp. 1133
-
-
Kapnistos, M.1
Kirkwood, K.M.2
Ramirez, J.3
-
8
-
-
66549086767
-
-
Lee, J. H.; Driva, P.; Hadjichristidis, N. Macromolecules 2009, 42, 1392
-
(2009)
Macromolecules
, vol.42
, pp. 1392
-
-
Lee, J.H.1
Driva, P.2
Hadjichristidis, N.3
-
9
-
-
63449141686
-
-
Lee, J. H.; Orfanou, K.; Driva, P. Macromolecules 2008, 41, 9165
-
(2008)
Macromolecules
, vol.41
, pp. 9165
-
-
Lee, J.H.1
Orfanou, K.2
Driva, P.3
-
16
-
-
36049037247
-
-
This important PTV study of step strain pointed out that only a subset of experimental data happened to agree with the tube model calculation that assumes quiescent relaxation. Actually, Osaki et al. first found the disagreement in 1980 (i.e., ref 37) before reporting the far better known agreement in ref 38 in 1982. We showed in this paper that the agreement between the stress relaxation data and the tube model prediction was completely fortuitous because the simultaneous PTV observations revealed significant macroscopic motions after shear cessation, and yet the calculation was only valid for quiescent stress relaxation
-
Ravindranath, S.; Wang, S. Q. Macromolecules 2007, 40, 8031. This important PTV study of step strain pointed out that only a subset of experimental data happened to agree with the tube model calculation that assumes quiescent relaxation. Actually, Osaki et al. first found the disagreement in 1980 (i.e., ref 37) before reporting the far better known agreement in ref 38 in 1982. We showed in this paper that the agreement between the stress relaxation data and the tube model prediction was completely fortuitous because the simultaneous PTV observations revealed significant macroscopic motions after shear cessation, and yet the calculation was only valid for quiescent stress relaxation
-
(2007)
Macromolecules
, vol.40
, pp. 8031
-
-
Ravindranath, S.1
Wang, S.Q.2
-
20
-
-
0000317679
-
-
Bagley, E. B.; Cabott, I. M.; West, D. C. J. Appl. Phys. 1958, 29, 109
-
(1958)
J. Appl. Phys.
, vol.29
, pp. 109
-
-
Bagley, E.B.1
Cabott, I.M.2
West, D.C.3
-
24
-
-
0006286763
-
-
Bergem, N. Proc. Int. Congr. Rheol., 7th, Gothenburg, Sweden 1976, 50
-
(1976)
Proc. Int. Congr. Rheol., 7th, Gothenburg, Sweden
, pp. 50
-
-
Bergem, N.1
-
26
-
-
0003535711
-
-
Springer-Verlag: Berlin,. Apparently, the view that wall slip in spurt flow is related to the sample undergoing a "fluid-to-rubber transition" has persisted to this date
-
Vinogradov, G. V.; Malkin, A. Y. Rheology of Polymers-Viscoelasticity and Flow of Polymers; Springer-Verlag: Berlin, 1980. Apparently, the view that wall slip in spurt flow is related to the sample undergoing a "fluid-to-rubber transition" has persisted to this date
-
(1980)
Rheology of Polymers - Viscoelasticity and Flow of Polymers
-
-
Vinogradov, G.V.1
Malkin, A.Y.2
-
27
-
-
77955174046
-
-
Malkin, A. Y.; Semakov, A. V.; Kulichikhin, V. G. Adv. Colloid Interface Sci. 2010, 157, 75
-
(2010)
Adv. Colloid Interface Sci.
, vol.157
, pp. 75
-
-
Malkin, A.Y.1
Semakov, A.V.2
Kulichikhin, V.G.3
-
28
-
-
0001231466
-
-
Here de Gennes contemplated a case where a melt was perceived to flow by a nonadsorbing wall and rediscovered Navier's account of wall slip:
-
De Gennes, P. G. C. R. Acad. Sci. 1979, 288B, 219 Here de Gennes contemplated a case where a melt was perceived to flow by a nonadsorbing wall and rediscovered Navier's account of wall slip
-
(1979)
C. R. Acad. Sci.
, vol.288
, pp. 219
-
-
De Gennes, P.G.1
Navier, C.-L.2
Goldstein, S.3
-
31
-
-
0000367892
-
-
This review summarized the research carried out in the 1990s and mentioned key publications in the period from 1950 to 1990
-
Wang, S. Q. Adv. Polym. Sci. 1999, 138, 227. This review summarized the research carried out in the 1990s and mentioned key publications in the period from 1950 to 1990
-
(1999)
Adv. Polym. Sci.
, vol.138
, pp. 227
-
-
Wang, S.Q.1
-
33
-
-
78751544167
-
-
Joshi, Y. M.; Lele, A. K.; Mashelkar, R. A. J. Non-Newton. Fluid Mech. 2000, 89, 103
-
(2000)
J. Non-Newton. Fluid Mech.
, vol.89
, pp. 103
-
-
Joshi, Y.M.1
Lele, A.K.2
Mashelkar, R.A.3
-
34
-
-
0002367522
-
-
Brochard-Wyart, F.; Gay, C.; deGennes, P. G. Macromolecules 1996, 29, 377
-
(1996)
Macromolecules
, vol.29
, pp. 377
-
-
Brochard-Wyart, F.1
Gay, C.2
Degennes, P.G.3
-
36
-
-
0000479798
-
-
Migler, K. B.; Hervet, H.; Leger, L. Phys. Rev. Lett. 1993, 70, 287
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 287
-
-
Migler, K.B.1
Hervet, H.2
Leger, L.3
-
37
-
-
33750600097
-
-
Archer, L. A.; Chen, Y. L.; Larson, R. G. J. Rheol. 1995, 39, 519
-
(1995)
J. Rheol.
, vol.39
, pp. 519
-
-
Archer, L.A.1
Chen, Y.L.2
Larson, R.G.3
-
40
-
-
0001143210
-
-
Leger, L.; Raphael, E.; Hervet, H. Adv. Polym. Sci. 1999, 138, 185
-
(1999)
Adv. Polym. Sci.
, vol.138
, pp. 185
-
-
Leger, L.1
Raphael, E.2
Hervet, H.3
-
45
-
-
0001542190
-
-
Fukuda, M.; Osaki, K.; Kurata, M. J. Polym. Sci., Polym. Phys. 1975, 13, 1563
-
(1975)
J. Polym. Sci., Polym. Phys.
, vol.13
, pp. 1563
-
-
Fukuda, M.1
Osaki, K.2
Kurata, M.3
-
47
-
-
0000986152
-
-
Osaki, K.; Nishizawa, K.; Kurata, M. Macromolecules 1982, 15, 1068
-
(1982)
Macromolecules
, vol.15
, pp. 1068
-
-
Osaki, K.1
Nishizawa, K.2
Kurata, M.3
-
48
-
-
0023960190
-
-
Larson, R. G.; Khan, S. A.; Raju, V. R. J. Rheol. 1988, 32, 145
-
(1988)
J. Rheol.
, vol.32
, pp. 145
-
-
Larson, R.G.1
Khan, S.A.2
Raju, V.R.3
-
49
-
-
0026905867
-
-
Morrison, F. A.; Larson, R. G. J. Polym. Sci., Polym. Phys. Ed. 1992, 30, 943
-
(1992)
J. Polym. Sci., Polym. Phys. Ed.
, vol.30
, pp. 943
-
-
Morrison, F.A.1
Larson, R.G.2
-
52
-
-
0020829194
-
-
Although Osaki speculated about the possibility of wall slip, he was actually inclined toward a different explanation given by, which was prompted by the ultrastrain softening data of ref 52 on step strain of polybutadiene melts that could readily experience massive wall slip
-
Although Osaki speculated about the possibility of wall slip, he was actually inclined toward a different explanation given by Marrucci, G. J. Rheol. 1983, 27, 433, which was prompted by the ultrastrain softening data of ref 52 on step strain of polybutadiene melts that could readily experience massive wall slip
-
(1983)
J. Rheol.
, vol.27
, pp. 433
-
-
Marrucci, G.1
-
55
-
-
0020199590
-
-
Menezes, E. V.; Graessley, W. W. J. Polym. Sci., Polym. Phys. Ed. 1982, 20, 1817
-
(1982)
J. Polym. Sci., Polym. Phys. Ed.
, vol.20
, pp. 1817
-
-
Menezes, E.V.1
Graessley, W.W.2
-
57
-
-
0032656798
-
-
Plucktaveesak, N.; Wang, S. Q.; Halasa, A. Macromolecules 1999, 32, 3045
-
(1999)
Macromolecules
, vol.32
, pp. 3045
-
-
Plucktaveesak, N.1
Wang, S.Q.2
Halasa, A.3
-
59
-
-
0041806724
-
-
The conclusion of this paper disagrees with:; Macromolecules 1985, 18, 2630
-
Wang, S. F.; Wang, S. Q.; Halasa, A.; Hsu, W.-L. Macromolecules 2003, 36, 5355 The conclusion of this paper disagrees with: Struglinksi, M. J.; Graessley, W. W. Macromolecules 1985, 18, 2630
-
(2003)
Macromolecules
, vol.36
, pp. 5355
-
-
Wang, S.F.1
Wang, S.Q.2
Halasa, A.3
Hsu, W.-L.4
Struglinksi, M.J.5
Graessley, W.W.6
-
63
-
-
70249101320
-
-
Li, X.; Wang, S. Q.; Wang, X. R. J. Rheol. 2009, 57, 1255
-
(2009)
J. Rheol.
, vol.57
, pp. 1255
-
-
Li, X.1
Wang, S.Q.2
Wang, X.R.3
-
67
-
-
0010047157
-
US-Japan Seminar on Polymer Processing and Rheology
-
White, J. L. US-Japan Seminar on Polymer Processing and Rheology Appl. Polym. Symp. 1973, 20, 155
-
(1973)
Appl. Polym. Symp.
, vol.20
, pp. 155
-
-
White, J.L.1
-
68
-
-
70349496369
-
-
Rodriguez-Gonzalez, F.; Perez-Gonzalez, J.; Marin-Santibanez, B. M. Chem. Eng. Sci. 2009, 64, 4675
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 4675
-
-
Rodriguez-Gonzalez, F.1
Perez-Gonzalez, J.2
Marin-Santibanez, B.M.3
-
70
-
-
0346355669
-
-
Munstedt, H.; Schmidt, M.; Wassner, E. J. Rheol. 2000, 44, 413
-
(2000)
J. Rheol.
, vol.44
, pp. 413
-
-
Munstedt, H.1
Schmidt, M.2
Wassner, E.3
-
71
-
-
0036630479
-
-
Schwetz, M.; Munstedt, H.; Heindl, M. J. Rheol. 2002, 46, 797
-
(2002)
J. Rheol.
, vol.46
, pp. 797
-
-
Schwetz, M.1
Munstedt, H.2
Heindl, M.3
-
73
-
-
34250073994
-
-
Maas, H. G.; Gruen, A.; Papantoniou, D. Exp. Fluids 1993, 15, 133
-
(1993)
Exp. Fluids
, vol.15
, pp. 133
-
-
Maas, H.G.1
Gruen, A.2
Papantoniou, D.3
-
77
-
-
0029388269
-
-
Archer, L. A.; Larson, R. G.; Chen, Y. L. J. Fluid Mech. 1995, 301, 133
-
(1995)
J. Fluid Mech.
, vol.301
, pp. 133
-
-
Archer, L.A.1
Larson, R.G.2
Chen, Y.L.3
-
78
-
-
33847609133
-
-
This rheometric setup is a circular Couette that has a finite shear stress gradient across the sample thickness. Sharp shear banding may not survive in presence of such a stress gradient for the moderately entangled polymer solutions under study
-
Hu, Y. T. J. Rheol. 2007, 51, 275. This rheometric setup is a circular Couette that has a finite shear stress gradient across the sample thickness. Sharp shear banding may not survive in presence of such a stress gradient for the moderately entangled polymer solutions under study
-
(2007)
J. Rheol.
, vol.51
, pp. 275
-
-
Hu, Y.T.1
-
82
-
-
42449111638
-
-
Boukany, P. E.; Hu, Y. T.; Wang, S. Q. Macromolecules 2008, 41, 2644
-
(2008)
Macromolecules
, vol.41
, pp. 2644
-
-
Boukany, P.E.1
Hu, Y.T.2
Wang, S.Q.3
-
84
-
-
78751520538
-
-
We omit here the only other available data from ref 68 because we do not have the explicit information on the extrapolation lengths.
-
We omit here the only other available data from ref 68 because we do not have the explicit information on the extrapolation lengths.
-
-
-
-
87
-
-
11044231549
-
-
Schweizer, T.; van Meerveld, J.; Öttinger, H. C. J. Rheol. 2004, 48, 1345
-
(2004)
J. Rheol.
, vol.48
, pp. 1345
-
-
Schweizer, T.1
Van Meerveld, J.2
Öttinger, H.C.3
-
88
-
-
43049136255
-
-
Auhl, D. J. Rheol. 2008, 52, 801
-
(2008)
J. Rheol.
, vol.52
, pp. 801
-
-
Auhl, D.1
-
90
-
-
84955040556
-
-
In engineering, the transition from elastic behavior to plastic behavior is yield" according to Wikipedia. The flow is possible only after the underlying structure has yielded. This yielding concept is not very different from "yield" in the concept of yield-stress that describes mechanical response to external stress of materials such as ketchup and yogurt. In such yield-stress materials, the viscosity is very high and abruptly drops greatly over a narrow range of shear stress due to some stress-induced structure rearrangements; i.e., the structure that survives at low stresses yields to a new state of flow beyond a particular stress level. Yield-stress materials are usually amorphous and noncrystalline. Evans () settled the controversy brought up by Barnes and Walters
-
"In engineering, the transition from elastic behavior to plastic behavior is yield" according to Wikipedia http://en.wikipedia.org/wiki/ Plasticity-%28physics%29. The flow is possible only after the underlying structure has yielded. This yielding concept is not very different from "yield" in the concept of yield-stress that describes mechanical response to external stress of materials such as ketchup and yogurt. In such yield-stress materials, the viscosity is very high and abruptly drops greatly over a narrow range of shear stress due to some stress-induced structure rearrangements; i.e., the structure that survives at low stresses yields to a new state of flow beyond a particular stress level. Yield-stress materials are usually amorphous and noncrystalline. Evans (Evans, I. D. J. Rheol. 1992, 36, 1313) settled the controversy brought up by Barnes and Walters
-
(1992)
J. Rheol.
, vol.36
, pp. 1313
-
-
Evans, I.D.1
-
94
-
-
34547892698
-
-
Wang, S. Q.; Ravindranath, S.; Wang., Y. Y.; Boukany, P. E. J. Chem. Phys. 2007, 127, 064903
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 064903
-
-
Wang, S.Q.1
Ravindranath, S.2
Wang, Y.Y.3
Boukany, P.E.4
-
99
-
-
78751551797
-
-
The physics of the stress overshoot is rich and has to do with yielding of the entanglement network and cannot be readily captured by the tube model calculation where the shear stress is calculated from the intrachain force of a single chain.
-
The physics of the stress overshoot is rich and has to do with yielding of the entanglement network and cannot be readily captured by the tube model calculation where the shear stress is calculated from the intrachain force of a single chain.
-
-
-
-
100
-
-
37049112742
-
-
Doi, M.; Edwards, S. F. J. Chem. Soc., Faraday Trans. 2 1979, 75, 38
-
(1979)
J. Chem. Soc., Faraday Trans. 2
, vol.75
, pp. 38
-
-
Doi, M.1
Edwards, S.F.2
-
101
-
-
0022766317
-
-
McLeish, T. C. B.; Ball, R. C. J. Polym. Sci., Polym. Phys. 1986, 24, 1735
-
(1986)
J. Polym. Sci., Polym. Phys.
, vol.24
, pp. 1735
-
-
McLeish, T.C.B.1
Ball, R.C.2
-
102
-
-
77954498819
-
-
Cates, M. E.; McLeish, T. C. B.; Marrucci, G. Europhys. Lett. 1993, 21, 451
-
(1993)
Europhys. Lett.
, vol.21
, pp. 451
-
-
Cates, M.E.1
McLeish, T.C.B.2
Marrucci, G.3
-
106
-
-
0001220531
-
-
Britton, M. M.; Mair, R. W.; Lambert, R. K.; Callaghan, P. T. J. Rheol. 1999, 43, 897
-
(1999)
J. Rheol.
, vol.43
, pp. 897
-
-
Britton, M.M.1
Mair, R.W.2
Lambert, R.K.3
Callaghan, P.T.4
-
108
-
-
0038454545
-
-
Salmon, J. B.; Colin, A.; Manneville, S.; Molino, F. Phys. Rev. Lett. 2003, 90, 228303
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 228303
-
-
Salmon, J.B.1
Colin, A.2
Manneville, S.3
Molino, F.4
-
109
-
-
0942300121
-
-
Salmon, J. B.; Manneville, S.; Colin, A. Phys. Rev. E 2003, 68, 051503
-
(2003)
Phys. Rev. e
, vol.68
, pp. 051503
-
-
Salmon, J.B.1
Manneville, S.2
Colin, A.3
-
110
-
-
3442900457
-
-
Becu, L.; Manneville, S.; Colin, A. Phys. Rev. Lett. 2004, 93, 018301
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 018301
-
-
Becu, L.1
Manneville, S.2
Colin, A.3
-
112
-
-
33748931495
-
-
Lopez-Gonzalez, M. R.; Holmes, W. M.; Callaghan, P. T. Soft Matter 2006, 2, 855
-
(2006)
Soft Matter
, vol.2
, pp. 855
-
-
Lopez-Gonzalez, M.R.1
Holmes, W.M.2
Callaghan, P.T.3
-
116
-
-
0033745767
-
-
Callaghan, P. T.; Gil, A. M. Macromolecules 2000, 33, 4116 It was concluded that "the origin of shear banding in (relatively polydisperse) polyacrylamide solutions is associated with hydrogen bond breakage above a critical shear rate". Such a conclusion was reached because other polymer (PS and PEO) solutions and poly(dimethylsiloxane) melt were found to display no shear banding: private communication with Paul T. Callaghan. PDMS is naturally polydisperse and consequently does not show shear banding
-
(2000)
Macromolecules
, vol.33
, pp. 4116
-
-
Callaghan, P.T.1
Gil, A.M.2
Li, X.3
Wang, S.Q.4
Van Der Gucht, J.5
-
117
-
-
77952674807
-
-
We can indeed find a more recent example where hydrogen bonding seems to play a dominant role
-
see: Li, X.; Wang, S. Q. Rheol. Acta 2010, 49, 89 We can indeed find a more recent example where hydrogen bonding seems to play a dominant role
-
(2010)
Rheol. Acta
, vol.49
, pp. 89
-
-
Li, X.1
Wang, S.Q.2
-
119
-
-
0032480701
-
-
Mead, D. W.; Larson, R. G.; Doi, M. Macromolecules 1998, 31, 7895
-
(1998)
Macromolecules
, vol.31
, pp. 7895
-
-
Mead, D.W.1
Larson, R.G.2
Doi, M.3
-
120
-
-
0141458779
-
-
Graham, R. S.; Likhtman, A. E.; McLeish, T. C. B.; Milner, S. T. J. Rheol. 2003, 47, 1171
-
(2003)
J. Rheol.
, vol.47
, pp. 1171
-
-
Graham, R.S.1
Likhtman, A.E.2
McLeish, T.C.B.3
Milner, S.T.4
|