-
1
-
-
3142748958
-
A new rounding procedure for the assignment problem with applications to dense graph assignment problems
-
S. Arora, A. Frieze and H. Kaplan. A new rounding procedure for the assignment problem with applications to dense graph assignment problems. Math. Programming Ser A, 92: 1-36, 2002.
-
(2002)
Math. Programming Ser A
, vol.92
, pp. 1-36
-
-
Arora, S.1
Frieze, A.2
Kaplan, H.3
-
2
-
-
77951693261
-
An O(log n/log log n)-approximation algorithm for the assymetric traveling salesman problem
-
A. Asadpour, M. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi. An O(log n/log log n)-approximation algorithm for the assymetric traveling salesman problem. Proc. of ACM-SIAM SODA, 2010.
-
Proc. of ACM-SIAM SODA, 2010
-
-
Asadpour, A.1
Goemans, M.2
Madry, A.3
Oveis Gharan, S.4
Saberi, A.5
-
3
-
-
35448981869
-
An approximation algorithm for max-min fair allocation of indivisible goods
-
A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of indivisible goods. Proc. of ACM STOC, 2007.
-
Proc. of ACM STOC, 2007
-
-
Asadpour, A.1
Saberi, A.2
-
4
-
-
4344588928
-
Pipage rounding: A new method of constructing algorithms with proven performance guarantee
-
A. Ageev and M. Sviridenko. Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. of Combinatorial Optimization, 8:307-328, 2004.
-
(2004)
J. of Combinatorial Optimization
, vol.8
, pp. 307-328
-
-
Ageev, A.1
Sviridenko, M.2
-
5
-
-
78751548734
-
Fault-tolerant facility location: A randomized dependent LP-rounding algorithm
-
J. Byrka, A. Srinivasan, and C. Swamy. Fault-tolerant facility location: a randomized dependent LP-rounding algorithm. Proc. of IPCO, 2010.
-
Proc. of IPCO, 2010
-
-
Byrka, J.1
Srinivasan, A.2
Swamy, C.3
-
6
-
-
38049090315
-
Maximizing a submodular set function subject to a matroid constraint
-
G. Calinescu, C. Chekuri, M. Pál and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. Proc. of IPCO, 182-196, 2007.
-
(2007)
Proc. of IPCO
, pp. 182-196
-
-
Calinescu, G.1
Chekuri, C.2
Pál, M.3
Vondrák, J.4
-
7
-
-
84855599508
-
Maximizing a submodular set function subject to a matroid constraint
-
To appear in special issue for STOC 2008
-
G. Calinescu, C. Chekuri, M. Pál and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. To appear in SIAM Journal on Computing, special issue for STOC 2008.
-
SIAM Journal on Computing
-
-
Calinescu, G.1
Chekuri, C.2
Pál, M.3
Vondrák, J.4
-
13
-
-
0002167079
-
Matroids, submodular functions and certain polyhedra
-
Gordon and Breach, New York
-
J. Edmonds. Matroids, submodular functions and certain polyhedra. Combinatorial Structures and Their Applications, Gordon and Breach, New York, 1970, 69-87.
-
(1970)
Combinatorial Structures and Their Applications
, pp. 69-87
-
-
Edmonds, J.1
-
14
-
-
33745633822
-
Generating randomized roundings with cardinality constraints and derandomizations
-
B. Doerr. Generating randomized roundings with cardinality constraints and derandomizations. Proc. of STACS, 571-583, 2006.
-
(2006)
Proc. of STACS
, pp. 571-583
-
-
Doerr, B.1
-
15
-
-
34547664809
-
Randomly rounding rationals with cardinality constraints and derandomizations
-
B. Doerr. Randomly rounding rationals with cardinality constraints and derandomizations. Proc. of STACS, 441-452, 2007.
-
(2007)
Proc. of STACS
, pp. 441-452
-
-
Doerr, B.1
-
16
-
-
0002758061
-
Matroid intersection
-
North Holland, Amsterdam
-
J. Edmonds. Matroid intersection. Discrete optimization I, North Holland, Amsterdam, 1979, 39-49.
-
(1979)
Discrete Optimization I
, pp. 39-49
-
-
Edmonds, J.1
-
17
-
-
0032108328
-
A threshold of ln n for approximating set cover
-
U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634-652, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.4
, pp. 634-652
-
-
Feige, U.1
-
18
-
-
0012523178
-
An analysis of approximations for maximizing submodular set functions - II
-
M. L. Fisher, G. L. Nemhauser and L. A. Wolsey. An analysis of approximations for maximizing submodular set functions - II. Math. Prog. Study, 8:73-87, 1978.
-
(1978)
Math. Prog. Study
, vol.8
, pp. 73-87
-
-
Fisher, M.L.1
Nemhauser, G.L.2
Wolsey, L.A.3
-
19
-
-
33746816635
-
Dependent rounding and its applications to approximation algorithms
-
DOI 10.1145/1147954.1147956
-
R. Gandhi, S. Khuller, S. Parthasarathy and A. Srinivasan. Dependent rounding and its applications to approximation algorithms. Journal of the ACM 53:324-360, 2006. (Pubitemid 44180741)
-
(2006)
Journal of the ACM
, vol.53
, Issue.3
, pp. 324-360
-
-
Gandhi, R.1
Khuller, S.2
Parthasarathy, S.3
Srinivasan, A.4
-
21
-
-
38049084076
-
Approximation algorithms for the maxmin allocation problem
-
S. Khot and A.K. Ponnuswami. Approximation algorithms for the maxmin allocation problem. In APPROX-RANDOM 2007, 204-217.
-
APPROX-RANDOM 2007
, pp. 204-217
-
-
Khot, S.1
Ponnuswami, A.K.2
-
22
-
-
70349100783
-
Maximizing submodular set functions subject to multiple linear constraints
-
A. Kulik, H. Shachnai and T. Tamir. Maximizing submodular set functions subject to multiple linear constraints. Proc. of ACM-SIAM SODA, 545-554, 2009.
-
(2009)
Proc. of ACM-SIAM SODA
, pp. 545-554
-
-
Kulik, A.1
Shachnai, H.2
Tamir, T.3
-
25
-
-
70350594730
-
Submodular maximization over multiple matroids via generalized exchange properties
-
Proc. of APPROX, Springer
-
J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple matroids via generalized exchange properties. Proc. of APPROX, Springer LNCS, 244-257, 2009.
-
(2009)
LNCS
, pp. 244-257
-
-
Lee, J.1
Sviridenko, M.2
Vondrák, J.3
-
26
-
-
70350654681
-
Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions
-
V. Mirrokni, M. Schapira and J. Vondrák. Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. Proc. of ACM EC, 2008.
-
Proc. of ACM EC, 2008
-
-
Mirrokni, V.1
Schapira, M.2
Vondrák, J.3
-
27
-
-
0006630131
-
Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds
-
A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM Journal on Computing 26:350-368, 1997.
-
(1997)
SIAM Journal on Computing
, vol.26
, pp. 350-368
-
-
Panconesi, A.1
Srinivasan, A.2
-
28
-
-
51249173817
-
Randomized rounding: A technique for provably good algorithms and algorithmic proofs
-
P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4):365-374, 1987.
-
(1987)
Combinatorica
, vol.7
, Issue.4
, pp. 365-374
-
-
Raghavan, P.1
Thompson, C.D.2
-
29
-
-
78751518064
-
A new approximation technique for resource-allocation problems
-
B. Saha and A. Srinivasan. A new approximation technique for resource-allocation problems. Proc. of ICS, 2010.
-
Proc. of ICS, 2010
-
-
Saha, B.1
Srinivasan, A.2
-
33
-
-
57049187237
-
Optimal approximation for the submodular welfare problem in the value oracle model
-
J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. Proc. of ACM STOC, 67-74, 2008.
-
(2008)
Proc. of ACM STOC
, pp. 67-74
-
-
Vondrák, J.1
-
34
-
-
77952348721
-
Symmetry and approximability of submodular maximization problems
-
J. Vondrák. Symmetry and approximability of submodular maximization problems. In Proc. of IEEE FOCS, 251-270, 2009.
-
(2009)
Proc. of IEEE FOCS
, pp. 251-270
-
-
Vondrák, J.1
-
35
-
-
0007604993
-
When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?
-
G. J. Woeginger. When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing, 12:5775, 2000.
-
(2000)
INFORMS Journal on Computing
, vol.12
, pp. 5775
-
-
Woeginger, G.J.1
|