메뉴 건너뛰기




Volumn , Issue , 2010, Pages 3366-3372

A study of recent classification algorithms and a novel approach for EEG data classification

Author keywords

Brain computer interface; Classification algorithms; FFSVC; IFFSVC and PSO RBF

Indexed keywords

CLASSIFICATION ALGORITHM; CLASSIFICATION PERFORMANCE; CLASSIFICATION TECHNIQUE; DATA CLASSIFICATION; DATA SETS; EEG SIGNALS; FFSVC; FUZZY FUNCTION; HYBRID TECHNIQUES; IFFSVC AND PSO-RBF; STATE OF THE ART; SUPPORT VECTOR CLASSIFIERS;

EID: 78751481871     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2010.5642424     Document Type: Conference Paper
Times cited : (7)

References (26)
  • 3
    • 9144223620 scopus 로고    scopus 로고
    • Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping
    • M. Okamoto, H. Dan, K. Sakamoto, and K. Takeo, " Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,"Neuroimage, vol. 21, pp. 99-111, 2004
    • (2004) Neuroimage , vol.21 , pp. 99-111
    • Okamoto, M.1    Dan, H.2    Sakamoto, K.3    Takeo, K.4
  • 4
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • S. Subasi, " EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert Systems with Applications, vol. 32, no. 4, pp. 1084-1093, 2007.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, S.1
  • 5
    • 37349026733 scopus 로고    scopus 로고
    • Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
    • K. Polat and S. Gunes, " Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals," Expert Systems with Applications, vol. 34, no. 3, pp. 2039-2048, 2008.
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 2039-2048
    • Polat, K.1    Gunes, S.2
  • 6
    • 34249029672 scopus 로고    scopus 로고
    • The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects
    • B. Blankertz, G. Dornhege, M. Krauledat, K. Robert Müller, and G. Curio, " The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects," Neuroimage, vol. 37, no. 2, pp. 539-550, 2007.
    • (2007) Neuroimage , vol.37 , Issue.2 , pp. 539-550
    • Blankertz, B.1    Dornhege, G.2    Krauledat, M.3    Robert Müller, K.4    Curio, G.5
  • 7
    • 0000294854 scopus 로고    scopus 로고
    • Motor imagery and direct brain-computer communication
    • G. Pfurtscheller, and C. Neuper, " Motor imagery and direct brain-computer communication," Proceedings of the IEEE, vol. 89, pp. 1123-1134, 2001
    • (2001) Proceedings of the IEEE , vol.89 , pp. 1123-1134
    • Pfurtscheller, G.1    Neuper, C.2
  • 8
    • 37049020236 scopus 로고    scopus 로고
    • Classifying EEG for brain computer interfaces using gaussian processes
    • M. Zhong, F. Lotte, M. Girolami, and A. Lecuyer, " Classifying EEG for brain computer interfaces using gaussian processes," Pattern Recognition Letters, vol. 29, no. 3, pp. 354-359, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.3 , pp. 354-359
    • Zhong, M.1    Lotte, F.2    Girolami, M.3    Lecuyer, A.4
  • 10
    • 56649124794 scopus 로고    scopus 로고
    • Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions
    • Celikyilmaz, I.B. Turksen, R. Aktas, M,M. Doganay, " Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions," Expert Systems with Applications, vol. 36, no. 2P1, pp. 1337-1354, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 P1 , pp. 1337-1354
    • Celikyilmaz1    Turksen, I.B.2    Aktas, R.3    Doganay, M.M.4
  • 13
    • 34548626636 scopus 로고    scopus 로고
    • Fuzzy functions with support vector machines
    • A. Celikyilmaz and B. Turksen, " Fuzzy functions with support vector machines," Information Sciences, vol. 177, no. 23, pp. 5163-5177, 2007.
    • (2007) Information Sciences , vol.177 , Issue.23 , pp. 5163-5177
    • Celikyilmaz, A.1    Turksen, B.2
  • 14
    • 84899381578 scopus 로고    scopus 로고
    • Artificial Neural Networks in EEG Analysis
    • Ed. R Begg, J Kamruzzaman, R Sarker, Hershey, PA,USA: Idea Group Publishing
    • R. Begg, and J. Kamruzzaman, and R. Sarker, " Artificial Neural Networks in EEG Analysis," Neural Networks in Healthcare: potential and challenges, Ed. R Begg, J Kamruzzaman, R Sarker, Hershey, PA,USA: Idea Group Publishing, 2006, pp. 178-194.
    • (2006) Neural Networks in Healthcare: Potential and Challenges , pp. 178-194
    • Begg, R.1    Kamruzzaman, J.2    Sarker, R.3
  • 18
    • 77950663983 scopus 로고    scopus 로고
    • The Application of Dynamic K-means Clustering Algorithm in the Center Selection of RBF Neural Networks
    • L. Hongyang and Jia He , " The Application of Dynamic K-means Clustering Algorithm in the Center Selection of RBF Neural Networks," 3rd International Conference on Genetic and Evolutionary Computing, vol. 177, no. 23, pp. 488-491, 2009.
    • (2009) 3rd International Conference on Genetic and Evolutionary Computing , vol.177 , Issue.23 , pp. 488-491
    • Hongyang, L.1    He, J.2
  • 25
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion and D.J. Newman, " UCI Machine Learning Repository," University of California, Irvine, School of Information and Computer Sciences, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 26
    • 34247194247 scopus 로고    scopus 로고
    • The use of fuzzy inference systems for classification in eegbased brain-computer interfaces
    • F. Lotte, "The use of fuzzy inference systems for classification in eegbased brain-computer interfaces," in Proc. of the 3rd international Brain-Computer Interface workshop, pp. 12-13,2006.
    • (2006) Proc. of the 3rd International Brain-Computer Interface Workshop , pp. 12-13
    • Lotte, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.