메뉴 건너뛰기




Volumn 4, Issue 8, 2010, Pages

Spatiotemporal sparsity induced similarity measure for human action recognition

Author keywords

Human action recognition; l1Norm; Sparse representation; Spatiotemporal

Indexed keywords

ACTION RECOGNITION; DATA SETS; FEATURE POINT DETECTION; GENERALIZATION ABILITY; HUMAN ACTIONS; HUMAN BEHAVIOR RECOGNITION; HUMAN-ACTION RECOGNITION; L1NORM; LARGE SCALE EXPERIMENTS; LINEAR COMBINATIONS; MODEL SELECTION; MODEL-FREE METHOD; SIMILARITY MEASURE; SPARSE REPRESENTATION; SPATIO TEMPORAL FEATURES; SPATIOTEMPORAL; STATE-OF-ART METHODS; TEMPLATE MATCHING METHOD; THREE PROBLEMS; VIDEO DECOMPOSITION; VIDEO REPRESENTATIONS;

EID: 78651588383     PISSN: 19759339     EISSN: None     Source Type: Journal    
DOI: 10.4156/jdcta.vol4.issue8.16     Document Type: Article
Times cited : (16)

References (26)
  • 1
    • 0030686376 scopus 로고    scopus 로고
    • IEEE Proceedings of Nonrigid and Articulated Motion Workshop
    • J. K. Aggarwal and Q. Cai. Human motion analysis: a review. IEEE Proceedings of Nonrigid and Articulated Motion Workshop, pages 90-102, 1997.
    • (1997) Human Motion Analysis: A Review , pp. 90-102
    • Aggarwal, J.K.1    Cai, Q.2
  • 2
    • 78651592594 scopus 로고    scopus 로고
    • A survey on visual surveillance of object motion and behaviors
    • W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance of object motion and behaviors. SMC
    • SMC
    • Hu, W.1    Tan, T.2    Wang, L.3    Maybank, S.4
  • 3
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • Schuldt, C. Laptev, and B. I. Caputo. Recognizing human actions: a local SVM approach. ICPR(17), pages 32-36,2004.
    • (2004) ICPR , vol.17 , pp. 32-36
    • Schuldt, C.L.1    Caputo, B.I.2
  • 4
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • I. Laptev and T. Lindeberg. Space-time interest points. ICCV, pages 432-439, 2003.
    • (2003) ICCV , pp. 432-439
    • Laptev, I.1    Lindeberg, T.2
  • 5
    • 34548748137 scopus 로고    scopus 로고
    • Space-time behavior-based correlation - OR - How to tell if two underlying motion fields are similar without computing them?
    • E. Shechtman and M. Irani. Space-time behavior-based correlation - OR - How to tell if two underlying motion fields are similar without computing them?. PAMI, 29(11):2045-2056, 2007.
    • (2007) PAMI , vol.29 , Issue.11 , pp. 2045-2056
    • Shechtman, E.1    Irani, M.2
  • 6
    • 51949085157 scopus 로고    scopus 로고
    • Learning human actions via information maximization
    • J. Liu and M. Shah. Learning human actions via information maximization. CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Liu, J.1    Shah, M.2
  • 8
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-temporal descriptor based on 3D-gradients
    • A. Klaser, M. Marszałek, and C. Schmid. A spatio-temporal descriptor based on 3D-gradients. BMVC, pages xx-yy, 2008.
    • (2008) BMVC
    • Klaser, A.1    Marszałek, M.2    Schmid, C.3
  • 9
    • 50649119435 scopus 로고    scopus 로고
    • Extracting spatiotemporal interest points using global information
    • S.-F. Wong and R. Cipolla. Extracting spatiotemporal interest points using global information. ICCV, pages 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Wong, S.-F.1    Cipolla, R.2
  • 10
    • 56749155587 scopus 로고    scopus 로고
    • An efficient dense and scale-invariant spatio-temporal interest point detector
    • G. Willems, T. Tuytelaars, and L. V. Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. ECCV, pages 650-663, 2008.
    • (2008) ECCV , pp. 650-663
    • Willems, G.1    Tuytelaars, T.2    Gool, L.V.3
  • 11
    • 0035279879 scopus 로고    scopus 로고
    • The recognition of human movement using temporal templates
    • A. F. Bobick and J. W. Davis. The recognition of human movement using temporal templates. PAMI, 23(3):257-267, 2001.
    • (2001) PAMI , vol.23 , Issue.3 , pp. 257-267
    • Bobick, A.F.1    Davis, J.W.2
  • 12
    • 5044232795 scopus 로고    scopus 로고
    • Shape representation and classification using the Poisson Equation
    • L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt. Shape representation and classification using the Poisson Equation. CVPR(2), pages II-61-II-67, 2004.
    • (2004) CVPR , vol.2 , pp. 61-67
    • Gorelick, L.1    Galun, M.2    Sharon, E.3    Basri, R.4    Brandt, A.5
  • 15
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian Hierarchical Model for Learning Natural Scene Categories
    • L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. IEEE Comp. Vis. Patt. Recog. 2005.
    • (2005) IEEE Comp. Vis. Patt. Recog
    • Fei-Fei, L.1    Perona, P.2
  • 16
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • June 2001
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV, 43(1):29-44, June 2001.
    • IJCV , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 19
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • December 2006
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. IP, 54(12):3736-3745, December 2006.
    • IEEE Trans. IP , vol.54 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 20
    • 78651587350 scopus 로고    scopus 로고
    • Sparsity Preserving Projections with Application to Face Recognition
    • in Press
    • L. Qiao, S. Chen, X. Tan, Sparsity Preserving Projections with Application to Face Recognition, Pattern Recognition, 2009, in press.
    • (2009) Pattern Recognition
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 22
    • 84858761801 scopus 로고    scopus 로고
    • Supervised dictionary learning
    • In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Adv. NIPS, volume 21, 2009.
    • (2009) Adv. NIPS , vol.21
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 23
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • 3
    • D. Donoho. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm. Pure and Applied Math, 59(6):797-829, 2006. 3
    • (2006) Comm. Pure and Applied Math , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.1
  • 24
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • 3
    • E.J. Andes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8): 1207-1223, 2008.3.
    • (2008) Communications On Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Andes, E.J.1    Romberg, J.2    Tao, T.3
  • 25
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. IJCV, 79(3):299-318, 2008.
    • (2008) IJCV , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 26
    • 50649098663 scopus 로고    scopus 로고
    • Discriminative subsequence mining for action classification
    • S. Nowozin, G.O. Bakir, and K. Tsuda. Discriminative subsequence mining for action classification. ICCV, pages 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Nowozin, S.1    Bakir, G.O.2    Tsuda, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.