메뉴 건너뛰기




Volumn 72, Issue , 2010, Pages 106-113

Applications of support vector machines on smart phone systems for emotional speech recognition

Author keywords

Emotional speech recognition; Mel scale frequency cepstral coefficients (MFCC); Smart phones; Social networks; Support vector machines; Time frequency parameter

Indexed keywords

CEPSTRAL COEFFICIENTS; EMOTIONAL SPEECH RECOGNITION; SMART PHONES; SOCIAL NETWORKS; SUPPORT VECTOR; TIME-FREQUENCY PARAMETER;

EID: 78651588060     PISSN: 2010376X     EISSN: 20103778     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (23)
  • 9
    • 33746410556 scopus 로고    scopus 로고
    • Emotional speech recognition: Resources, features and methods
    • Dimitrios Ververidis and Constantine Kotropoulos. (2006). Emotional speech recognition: Resources, features and methods. Speech Communication, 48 (9) 1162-1181.
    • (2006) Speech Communication , vol.48 , Issue.9 , pp. 1162-1181
    • Ververidis, D.1    Kotropoulos, C.2
  • 13
    • 85034230784 scopus 로고    scopus 로고
    • Improving automatic emotion recognition from speech via gender differentiation
    • Vogt, T. and André, E. (2006). Improving automatic emotion recognition from speech via gender differentiation. Language Resources and Evaluation Conference.
    • (2006) Language Resources and Evaluation Conference
    • Vogt, T.1    André, E.2
  • 16
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257-286.
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 21
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423-1447.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.