메뉴 건너뛰기




Volumn 76 LNCSE, Issue , 2011, Pages 179-187

An hp certified reduced basis method for parametrized parabolic partial differential equations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COSTS; ELLIPTIC EQUATIONS; H-REFINEMENT; MULTI-ELEMENT; NEW APPROACHES; NUMERICAL RESULTS; P-TYPE; PARABOLIC EQUATIONS; PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS; PARAMETER VALUES; REDUCED BASIS METHODS; REDUCED-BASIS APPROXIMATION; SAMPLING PROCEDURES; SUBDOMAIN;

EID: 78651582206     PISSN: 14397358     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-15337-2_15     Document Type: Conference Paper
Times cited : (8)

References (9)
  • 2
    • 0017970146 scopus 로고
    • Automatic choice of global shape functions in structural analysis
    • B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape functions in structural analysis. AIAA J., 16, 525-528, 1978
    • (1978) AIAA J. , vol.16 , pp. 525-528
    • Almroth, B.O.1    Stern, P.2    Brogan, F.A.3
  • 3
    • 78651554414 scopus 로고    scopus 로고
    • An hp certified reduced basis method for parametrized elliptic partial differential equations
    • accepted
    • J. L. Eftang, A. T. Patera, and E. M. Rønquist. An hp certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput., accepted 2010
    • (2010) SIAM J. Sci. Comput.
    • Eftang, J.L.1    Patera, A.T.2    Rønquist, E.M.3
  • 4
    • 15744385753 scopus 로고    scopus 로고
    • A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations
    • M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN, 39, 157-181, 2005
    • (2005) M2AN , vol.39 , pp. 157-181
    • Grepl, M.A.1    Patera, A.T.2
  • 5
    • 41549118036 scopus 로고    scopus 로고
    • Reduced basis method for finite volume approximations of parametrized linear evolution equations
    • B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN Math. Model. Numer. Anal., 42, 277-302, 2008
    • (2008) M2AN Math. Model. Numer. Anal. , vol.42 , pp. 277-302
    • Haasdonk, B.1    Ohlberger, M.2
  • 6
    • 0019009732 scopus 로고
    • Reduced basis technique for nonlinear analysis of structures
    • A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of structures. AIAA J., 18, 455-462, 1980
    • (1980) AIAA J. , vol.18 , pp. 455-462
    • Noor, A.K.1    Peters, J.M.2
  • 7
    • 77950795079 scopus 로고    scopus 로고
    • A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids: FENE dumbbells in extensional flow
    • D. J. Knezevic and A. T. Patera. A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids: FENE dumbbells in extensional flow. SIAM J. Sci. Comput., 32(2):793-817, 2010
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.2 , pp. 793-817
    • Knezevic, D.J.1    Patera, A.T.2
  • 8
    • 67349223776 scopus 로고    scopus 로고
    • Reduced Basis Approximation and a Posteriori Error Estimation for Paramtrized Parabolic PDEs; Application to Real-Time Bayesian Parameter Estimation
    • Biegler, et al. Wiley, London
    • N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and A Posteriori Error Estimation for Paramtrized Parabolic PDEs; Application to Real-Time Bayesian Parameter Estimation. In: Biegler, et al. Computational Methods for Large Scale Inverse Problems and Uncertainty Quantification. Wiley, London (2009)
    • (2009) Computational Methods for Large Scale Inverse Problems and Uncertainty Quantification
    • Nguyen, N.C.1    Rozza, G.2    Huynh, D.B.P.3    Patera, A.T.4
  • 9
    • 53749107686 scopus 로고    scopus 로고
    • Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations
    • G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and A Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations. Arch. Comput. Methods Eng., 15, 229-275, 2008
    • (2008) Arch. Comput. Methods Eng. , vol.15 , pp. 229-275
    • Rozza, G.1    Huynh, D.B.P.2    Patera, A.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.