메뉴 건너뛰기




Volumn 2, Issue 3, 2010, Pages 375-382

Spatio-temporal processes

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL ISSUES; COVARIANCE STRUCTURES; EXPECTATION-MAXIMIZATION ALGORITHMS; FREQUENTIST; HIERARCHICAL BAYESIAN; MARKOV CHAIN MONTE CARLO; NONSEPARABLE; SPATIO-TEMPORAL; SPATIO-TEMPORAL DATA;

EID: 78651577370     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.88     Document Type: Article
Times cited : (17)

References (59)
  • 1
    • 0032437366 scopus 로고    scopus 로고
    • Space-time statistics for environmental and agricultural related phenomena
    • (Special Issue on Space-time Methods)
    • Stein A, Groenigen JV, Jeger M, Hoosbeek M. Space-time statistics for environmental and agricultural related phenomena. Environ Ecol Stat 1998, 5:155-172 (Special Issue on Space-time Methods).
    • (1998) Environ Ecol Stat , vol.5 , pp. 155-172
    • Stein, A.1    Groenigen, J.V.2    Jeger, M.3    Hoosbeek, M.4
  • 2
    • 33749362015 scopus 로고    scopus 로고
    • Estimation of parameterized spatiotemporal dynamic models
    • Xu K, Wilke CK. Estimation of parameterized spatiotemporal dynamic models. J Stat Plan Inference 2007, 137:567-588.
    • (2007) J Stat Plan Inference , vol.137 , pp. 567-588
    • Xu, K.1    Wilke, C.K.2
  • 4
    • 3242721955 scopus 로고    scopus 로고
    • Spatio-temporal prediction inside a free-air co2 enrichment system
    • Mitchell MW, Gumpertz ML. Spatio-temporal prediction inside a free-air co2 enrichment system. J Agric Biol Environ Stat 2003, 8:310-327.
    • (2003) J Agric Biol Environ Stat , vol.8 , pp. 310-327
    • Mitchell, M.W.1    Gumpertz, M.L.2
  • 5
    • 14944355575 scopus 로고    scopus 로고
    • Space-time covariance functions
    • Stein ML. Space-time covariance functions. J Am Stat Assoc 2005, 100:310-321.
    • (2005) J Am Stat Assoc , vol.100 , pp. 310-321
    • Stein, M.L.1
  • 7
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable, spatiotemporal stationary covariance functions
    • Cressie NA, Huang H. Classes of nonseparable, spatiotemporal stationary covariance functions. J Am Stat Assoc 1999, 94:1330-1340.
    • (1999) J Am Stat Assoc , vol.94 , pp. 1330-1340
    • Cressie, N.A.1    Huang, H.2
  • 8
    • 0035998830 scopus 로고    scopus 로고
    • Nonseparable, stationary covariance functions for space-time data
    • Gneiting T. Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 2002, 97:590-600.
    • (2002) J Am Stat Assoc , vol.97 , pp. 590-600
    • Gneiting, T.1
  • 9
    • 0002764635 scopus 로고    scopus 로고
    • Space-time analysis using a general product-sum model
    • Iaco SD, Myers D, Posa D. Space-time analysis using a general product-sum model. Stat Probab Lett 2001, 52:21-28.
    • (2001) Stat Probab Lett , vol.52 , pp. 21-28
    • Iaco, S.D.1    Myers, D.2    Posa, D.3
  • 10
    • 0002840360 scopus 로고    scopus 로고
    • Nonseparable space-time covariance models: some parametric families
    • Iaco SD, Myers D, Posa D. Nonseparable space-time covariance models: some parametric families. Math Geol 2002, 34:23-42.
    • (2002) Math Geol , vol.34 , pp. 23-42
    • Iaco, S.D.1    Myers, D.2    Posa, D.3
  • 11
    • 0742288469 scopus 로고    scopus 로고
    • The linear coregionalization model and the product-sum space-time variogram
    • Iaco SD, Myers D, Posa D. The linear coregionalization model and the product-sum space-time variogram. Math Geol 2003, 35:25-38.
    • (2003) Math Geol , vol.35 , pp. 25-38
    • Iaco, S.D.1    Myers, D.2    Posa, D.3
  • 12
    • 47549089482 scopus 로고    scopus 로고
    • A class of nonseparable and nonstationary spatial temporal covariance functions
    • Fuentes M, Chen L, Davis JM. A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 2008, 19:487-507.
    • (2008) Environmetrics , vol.19 , pp. 487-507
    • Fuentes, M.1    Chen, L.2    Davis, J.M.3
  • 13
    • 0032752472 scopus 로고    scopus 로고
    • Geostatistical space-time models: A review
    • Kyriakidis PC, Journel AG. Geostatistical space-time models: a review. Math Geol 1999, 31:651-684.
    • (1999) Math Geol , vol.31 , pp. 651-684
    • Kyriakidis, P.C.1    Journel, A.G.2
  • 14
    • 38649133845 scopus 로고    scopus 로고
    • New classes of covariance and spectral density functions for spatio-temporal modeling
    • Porcu E, Mateu J, Saura F. New classes of covariance and spectral density functions for spatio-temporal modeling. Stoch Environ Res Risk Assess 2008, 22(Suppl 1):S65-S79.
    • (2008) Stoch Environ Res Risk Assess , vol.22 , Issue.SUPPL. 1
    • Porcu, E.1    Mateu, J.2    Saura, F.3
  • 15
    • 0042208341 scopus 로고    scopus 로고
    • Families of spatio-temporal stationary covariance models
    • DOI 10.1016/S0378-3758(02)00353-1, PII S0378375802003531
    • Ma C. Families of spatio-temporal stationary covariance models. J Stat Plan Inference 2003, 116:489-501. (Pubitemid 36946078)
    • (2003) Journal of Statistical Planning and Inference , vol.116 , Issue.2 , pp. 489-501
    • Ma, C.1
  • 16
    • 0030184050 scopus 로고    scopus 로고
    • Spatio-temporal prediction of snow water equivalent using the Kalman filter
    • Huang HC, Cressie NA. Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput Stat Data Anal 1996, 22:159-175.
    • (1996) Comput Stat Data Anal , vol.22 , pp. 159-175
    • Huang, H.C.1    Cressie, N.A.2
  • 17
    • 0030424167 scopus 로고    scopus 로고
    • Mapping tropical pacific sea level: data assimilation via a reduced state space Kalman filter
    • Cane MA, Kaplan A, Miller RN, Tang B, Hackert EC, Busalacchi AJ. Mapping tropical pacific sea level: data assimilation via a reduced state space Kalman filter. J Geophys Res 1996, 101:22599-22617.
    • (1996) J Geophys Res , vol.101 , pp. 22599-22617
    • Cane, M.A.1    Kaplan, A.2    Miller, R.N.3    Tang, B.4    Hackert, E.C.5    Busalacchi, A.J.6
  • 19
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle CK, Cressie NA. A dimension-reduced approach to space-time Kalman filtering. Biometrika 1999, 86:815-829.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.K.1    Cressie, N.A.2
  • 20
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman RE. A new approach to linear filtering and prediction problems. Trans ASME 1960, 82:35-45.
    • (1960) Trans ASME , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 21
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the em algorithm
    • Shumway RH, Stoffer DS. An approach to time series smoothing and forecasting using the em algorithm. J Time Ser Anal 1982, 3:253-264.
    • (1982) J Time Ser Anal , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 23
    • 0016333007 scopus 로고
    • Computational aspects of maximum likelihood estimation and redicution in sensitivity function calculations
    • Gupta NK, Mehra RK. Computational aspects of maximum likelihood estimation and redicution in sensitivity function calculations. IEEE Trans Automat Contr 1974, 19:774-783.
    • (1974) IEEE Trans Automat Contr , vol.19 , pp. 774-783
    • Gupta, N.K.1    Mehra, R.K.2
  • 25
    • 84948109721 scopus 로고    scopus 로고
    • 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons
    • McLachlan GJ, Krishnan T. The EM Algorithm and Extensions. 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons; 2008.
    • (2008) The EM Algorithm and Extensions
    • McLachlan, G.J.1    Krishnan, T.2
  • 26
    • 84950427374 scopus 로고
    • An approach to statistical spatial-temporal modeling of meterological fields
    • Handcock MS, Wallis JR. An approach to statistical spatial-temporal modeling of meterological fields. J Am Stat Assoc 1994, 89:368-378.
    • (1994) J Am Stat Assoc , vol.89 , pp. 368-378
    • Handcock, M.S.1    Wallis, J.R.2
  • 28
    • 0032409329 scopus 로고    scopus 로고
    • Hierarchical Bayesian space-time models
    • (Special issue on space-time methods)
    • Wikle CK, Berliner LM, Cressie N. Hierarchical Bayesian space-time models. Environ Ecol Stat 1998, 5:117-154 (Special issue on space-time methods).
    • (1998) Environ Ecol Stat , vol.5 , pp. 117-154
    • Wikle, C.K.1    Berliner, L.M.2    Cressie, N.3
  • 29
    • 0033426717 scopus 로고    scopus 로고
    • Venezuelan rainfall data analysed by using a Bayesian space-time model
    • SansóB, Guenni L. Venezuelan rainfall data analysed by using a Bayesian space-time model. J R Stat Soc Ser., C: Appl Stat 1999, 48:345-362.
    • (1999) J R Stat Soc Ser., C: Appl Stat , vol.48 , pp. 345-362
    • Sansó, B.1    Guenni, L.2
  • 30
    • 1542469523 scopus 로고    scopus 로고
    • Spatiotemporal hierarchical Bayesian modeling: Tropical ocean surface winds
    • Wikle CK, Milliff RF, Nychka D, Berliner LM. Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. J Am Stat Assoc 2001, 96:382-397.
    • (2001) J Am Stat Assoc , vol.96 , pp. 382-397
    • Wikle, C.K.1    Milliff, R.F.2    Nychka, D.3    Berliner, L.M.4
  • 31
    • 0036489050 scopus 로고    scopus 로고
    • Le ND. Bayesian spatial prediction of random space-time fields with applications to mapping pm-2.5 exposure
    • Kibria BG, Sun L, Zidek JV, Le ND. Bayesian spatial prediction of random space-time fields with applications to mapping pm-2.5 exposure. J Am Stat Assoc 2002, 97:112-124.
    • (2002) J Am Stat Assoc , vol.97 , pp. 112-124
    • Kibria, B.G.1    Sun, L.2    Zidek, J.V.3
  • 32
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • (Special feature article)
    • Wikle CK. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 2003, 84:1382-1394 (Special feature article).
    • (2003) Ecology , vol.84 , pp. 1382-1394
    • Wikle, C.K.1
  • 33
    • 0742288966 scopus 로고    scopus 로고
    • Winds from a Bayesian hierarchical model: computation for atmospheric-ocean research
    • (Special issue on statistical analysis of massive data streams)
    • Hoar TJ, Milliff RF, Nychka D, Wikle CK, Berliner LM. Winds from a Bayesian hierarchical model: computation for atmospheric-ocean research. J Comput Graph Stat 2003, 12:781-807 (Special issue on statistical analysis of massive data streams).
    • (2003) J Comput Graph Stat , vol.12 , pp. 781-807
    • Hoar, T.J.1    Milliff, R.F.2    Nychka, D.3    Wikle, C.K.4    Berliner, L.M.5
  • 34
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression for space-time data: A Bayesian perspective
    • (Special issue on emerging issues in longitudinal and functional data analysis)
    • Fahrmeir L, Kneib T, Lang S. Penalized structured additive regression for space-time data: a Bayesian perspective. Stat Sin 2004, 14:731-761 (Special issue on emerging issues in longitudinal and functional data analysis).
    • (2004) Stat Sin , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 36
    • 39049143215 scopus 로고    scopus 로고
    • A hierarchical Bayesian nonlinear spatio-temporal model for the spread of invasive species with application to the eurasian collared-dove
    • (Special issue on the new development of statistical analysis in wildlife, fisheries, and ecological research)
    • Hooten MB, Wikle CK. A hierarchical Bayesian nonlinear spatio-temporal model for the spread of invasive species with application to the eurasian collared-dove. Environ Ecol Stat 2008, 15:59-70 (Special issue on the new development of statistical analysis in wildlife, fisheries, and ecological research).
    • (2008) Environ Ecol Stat , vol.15 , pp. 59-70
    • Hooten, M.B.1    Wikle, C.K.2
  • 37
    • 34547667368 scopus 로고    scopus 로고
    • Hierarchical Bayesian spatio-temporal models for population spread
    • Wikle CK, Hooten MB, eds., In: Clark JS, Gelfand AE, eds, Statistical Methods and Applications. New York: Oxford University Press
    • Wikle CK, Hooten MB, eds. Hierarchical Bayesian spatio-temporal models for population spread. In: Clark JS, Gelfand AE, eds. Hierarchical Modelling for the Environmental Sciences, Statistical Methods and Applications. New York: Oxford University Press; 2006, 145-169.
    • (2006) Hierarchical Modelling for the Environmental Sciences , pp. 145-169
  • 38
    • 41949123693 scopus 로고    scopus 로고
    • Markov chain Monte Carlo for a spatial-temporal autologistic regression model
    • Zheng Y, Zhu J. Markov chain Monte Carlo for a spatial-temporal autologistic regression model. J Comput Graph Stat 2008, 17:123-137.
    • (2008) J Comput Graph Stat , vol.17 , pp. 123-137
    • Zheng, Y.1    Zhu, J.2
  • 39
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand AE, Smith AF. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 1990, 85:398-409.
    • (1990) J Am Stat Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.2
  • 40
    • 32344446687 scopus 로고
    • Understanding the Metropolis- Hastings algorithm
    • Chib S, Greenberg E. Understanding the Metropolis- Hastings algorithm. Am Stat 1995, 49:327-335.
    • (1995) Am Stat , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 42
    • 0001574731 scopus 로고
    • Efficient parameterization for normal linear mixed models
    • Gelfand AE, Sahu SK, Carlin BP. Efficient parameterization for normal linear mixed models. Biometrika 1995, 82:479-488.
    • (1995) Biometrika , vol.82 , pp. 479-488
    • Gelfand, A.E.1    Sahu, S.K.2    Carlin, B.P.3
  • 43
    • 0003548569 scopus 로고
    • Revised Edition, Wiley Series in Probability andMathematical Statistics. New York: John Wiley & Sons
    • Cressie NA. Statistics for Spatial Data, Revised Edition, Wiley Series in Probability andMathematical Statistics. New York: John Wiley & Sons; 1993.
    • (1993) Statistics for Spatial Data
    • Cressie, N.A.1
  • 44
    • 0042401905 scopus 로고    scopus 로고
    • Periodogram and other spectral methods for nonstationary spatial processes
    • Fuentes M. Periodogram and other spectral methods for nonstationary spatial processes. Biometrika 2002, 89:197-210.
    • (2002) Biometrika , vol.89 , pp. 197-210
    • Fuentes, M.1
  • 45
    • 23844472403 scopus 로고    scopus 로고
    • Formal test for nonstationary of spatial stochastic processes
    • Fuentes M. A formal test for nonstationary of spatial stochastic processes. JMultivar Anal 2005a, 96:30-55.
    • (2005) J Multivar Anal , vol.96 , pp. 30-55
    • Fuentes, M.A.1
  • 46
    • 27644442822 scopus 로고    scopus 로고
    • Testing for separability of spatial temporal covariance functions
    • Fuentes M. Testing for separability of spatial temporal covariance functions. J Stat Plan Inference 2005b, 136:447-466.
    • (2005) J Stat Plan Inference , vol.136 , pp. 447-466
    • Fuentes, M.1
  • 47
    • 0000039489 scopus 로고    scopus 로고
    • Models for continuous stationary space-time processes
    • Gregoire T, Brillinger D, Diggle P, Russek-Cohen E, Warren W, Wolfinger R, eds, Lecture notes in Statistics. New York: Springer-Verlag
    • Jones R, Zhang Y. Models for continuous stationary space-time processes. In: Gregoire T, Brillinger D, Diggle P, Russek-Cohen E, Warren W, Wolfinger R, eds. Modelling Longitudinal and Spatially Correlated Data, vol.122, Lecture notes in Statistics. New York: Springer-Verlag; 1997, 289-298.
    • (1997) Modelling Longitudinal and Spatially Correlated Data , vol.122 , pp. 289-298
    • Jones, R.1    Zhang, Y.2
  • 49
    • 0004195898 scopus 로고    scopus 로고
    • International Association for Mathematical Geosciences: Studies in Mathematical Geosciences. New York: Oxford University Press
    • Christakos G. Modern Spatiotemporal Geostatistics, vol.6, International Association for Mathematical Geosciences: Studies in Mathematical Geosciences. New York: Oxford University Press; 2000.
    • (2000) Modern Spatiotemporal Geostatistics , vol.6
    • Christakos, G.1
  • 51
    • 5444230598 scopus 로고    scopus 로고
    • Identification ofmodel components for a class of continuous spatiotemporal models
    • Hartfield MI, Gunst RF. Identification ofmodel components for a class of continuous spatiotemporal models. J Agric Biol Environ Stat 2003, 8:105-121.
    • (2003) J Agric Biol Environ Stat , vol.8 , pp. 105-121
    • Hartfield, M.I.1    Gunst, R.F.2
  • 52
    • 4344639705 scopus 로고    scopus 로고
    • Methods for generating non-separable spatiotemporal covariance models with potential environmental applications
    • Kolovos A, Christakos G, Hristopulos D, Serre M. Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv Water Resour 2004, 27:815-830.
    • (2004) Adv Water Resour , vol.27 , pp. 815-830
    • Kolovos, A.1    Christakos, G.2    Hristopulos, D.3    Serre, M.4
  • 53
    • 38649100348 scopus 로고    scopus 로고
    • Recent developments on the construction of spatio-temporal covariance models
    • Ma C. Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess 2008, 22(Suppl 1):S39-S47.
    • (2008) Stoch Environ Res Risk Assess , vol.22 , Issue.SUPPL. 1
    • Ma, C.1
  • 54
    • 1642398367 scopus 로고    scopus 로고
    • Space-time Kalman filter
    • El-Shaarawi AH, Piegorsch WW, eds, Chichester: John Wiley & Sons
    • Cressie NA, Wikle CK. Space-time Kalman filter. In: El-Shaarawi AH, Piegorsch WW, eds. Encyclopedia of Environmentrics, vol.4. Chichester: John Wiley & Sons; 2002, 2045-2049.
    • (2002) Encyclopedia of Environmentrics , vol.4 , pp. 2045-2049
    • Cressie, N.A.1    Wikle, C.K.2
  • 55
    • 37649005978 scopus 로고    scopus 로고
    • Mining spatio-temporal patterns in object mobility databases
    • Verhein F, Chawla S. Mining spatio-temporal patterns in object mobility databases. Data Min Knowl Discov 2008, 16:5-38.
    • (2008) Data Min Knowl Discov , vol.16 , pp. 5-38
    • Verhein, F.1    Chawla, S.2
  • 56
    • 0011520418 scopus 로고
    • Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter
    • Stoffer DS, Wall KD. Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter. J Am Stat Assoc 1991, 86:1024-1033.
    • (1991) J Am Stat Assoc , vol.86 , pp. 1024-1033
    • Stoffer, D.S.1    Wall, K.D.2
  • 57
    • 0039486626 scopus 로고    scopus 로고
    • A state-space approach to bootstrapping conditional forecasts in arma models
    • Wall KD, Stoffer DS. A state-space approach to bootstrapping conditional forecasts in arma models. J Time Ser Anal 2002, 23:733-752.
    • (2002) J Time Ser Anal , vol.23 , pp. 733-752
    • Wall, K.D.1    Stoffer, D.S.2
  • 58
    • 0009904787 scopus 로고    scopus 로고
    • On the change of support problem for spatio-temporal data
    • Gelfand AE, Zhu L, Carlin BP. On the change of support problem for spatio-temporal data. Biostatistics 2001, 2:31-45.
    • (2001) Biostatistics , vol.2 , pp. 31-45
    • Gelfand, A.E.1    Zhu, L.2    Carlin, B.P.3
  • 59
    • 29144508557 scopus 로고    scopus 로고
    • A kernel-based spatiotemporal dynamic model for nowcasting weather radar reflectivities
    • Xu K, Wikle CK, Fox NI. A kernel-based spatiotemporal dynamic model for nowcasting weather radar reflectivities. J Am Stat Assoc 2005, 100:1133-1144.
    • (2005) J Am Stat Assoc , vol.100 , pp. 1133-1144
    • Xu, K.1    Wikle, C.K.2    Fox, N.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.